

Journal of Global Optimization 18: 35–58, 2000. © 2000 Kluwer Academic Publishers. Printed in the Netherlands.

Dominators for Multiple-objective Quasiconvex Maximization Problems

EMILIO CARRIZOSA^{1,*} and FRANK PLASTRIA²

¹Facultad de Matemáticas, Universidad de Sevilla, C/Tarfia s/n, 41012 Sevilla, Spain E-mail: ecarriz@cica.es

²Department of Management Informatics, Vrije Universiteit Brussel, Pleinlaan, 2, B-1050 Brussels, Belgium (E-mail: Frank.Plastria@vub.ac.be)

(Received 19 January 1998; accepted in revised form 6 January 2000)

Abstract. In this paper we address the problem of finding a dominator for a multiple-objective maximization problem with quasiconvex functions. The one-dimensional case is discussed in some detail, showing how a Branch-and-Bound procedure leads to a dominator with certain minimality properties. Then, the well-known result stating that the set of vertices of a polytope S contains an optimal solution for single-objective quasiconvex maximization problems is extended to multipleobjective problems, showing that, under upper-semicontinuity assumptions, the set of (k-1)dimensional faces is a dominator for k-objective problems. In particular, for biobjective quasiconvex problems on a polytope S, the edges of S constitute a dominator, from which a dominator with minimality properties can be extracted by Branch-and Bound methods.

Key words: Multiple-objective problems; Quasiconvex maximization; Dominators

1. Introduction

Given a nonempty closed subset *S* of \mathbb{R}^n and a function $F: S \subset \mathbb{R}^n \to \mathbb{R}^k$, define the *multiple-objective* problem (P[F; S]),

$$\max_{x \in S} F(x), \qquad (P[F;S])$$

which seeks those alternatives maximizing simultaneously the components F_1, F_2, \ldots, F_k of F, [7, 28, 31].

Although the term simultaneous maximization is not uniquely defined, it customarily means finding the set $\mathscr{E}[F; S]$ of *efficient* or *Pareto-optimal* solutions to (P[F; S]),

 $\mathscr{E}[F; S] = \{x \in S : \text{no } y \in S \text{ verifies } F_i(y) \ge F_i(x) \forall i = 1, 2, \dots, k\}$ with at least one inequality strict}

In general $\mathscr{E}[F; S]$ lacks many desirable properties such as being connected or closed, and this seems to be quite often the case and not only in pathological

^{*} The research of this author is partially supported by Grant PB96-1416-C02-02 of Dirección General de Enseñanza Superior, Spain.

examples: take, for instance, the biobjective convex maximization problem in one variable (n = 1, k = 2) with $F(x) = ((x + 1)^2, (x - 1)^2)$ and S = [-2, 1.5], plotted in Figure 1.

Since $F(-2) \ge F(x) \forall x \in [-2, 0]$, with at least one inequality strict, and $F(1.5) \ge F(x) \forall x \in [0.5, 1.5[$, with at least one ineuality strict too, it follows that the set of Pareto-optimal points must be contained in $\{-2\} \cup [0, 0.5[\cup \{1.5\}]$. In fact, it is readily seen from the plot that

$$\mathscr{C}[F; S] = \{-2\} \cup [0, 0.5[\cup \{1.5\}],\$$

which is a disconnected non-closed set. See following sections and also e.g. [3] for other instances.

Moreover, although there exist procedures to check whether a given point is efficient or not, e.g. [7, 31], an algorithm to construct $\mathscr{C}[F; S]$ is only available for a few classes of problems, such as multiple-objective linear problems, [28].

This drawback has been overcome in the literature by means of two strategies: either $\mathscr{C}[F; S]$ is sought, but, due to the unability for obtaining it, an approximation (sometimes with unknown degree of precision) is provided, e.g. [8, 18], or else the concept of efficiency is relaxed and replaced by a manageable surrogate of it.

In this paper we follow the second approach by using the concept of *dominator*, [5, 16, 21, 30], also called *weak kernel*, e.g. in [31] which is defined as any subset $S_0 \subset S$ such that, for any feasible $x \notin S_0$, S_0 contains a feasible alternative at least as good as x with respect to all objectives. See Section 2 for a formal definition.

It should be remarked that this concept is not only useful as a surrogate of the idea of Pareto-efficiency, but also as a tool in the resolution of some single-objective problems. Indeed, some of the most popular optimization methods for single-objective problems of the form

MULTIPLE-OBJECTIVE QUASICONVEX MAXIMIZATION

 $\max_{x \in S} \Psi(x) \tag{1.1}$

require the feasible region *S* to be bounded. Such is the case, among others, of the Branch and Bound methods for global optimization, e.g. [15], which, in their simplest version, require, as pre-processing, the construction of a bounded polyhedron *P* (usually a hyper-rectangle, or a simplex) including either the whole feasible region, or, at least a bounded subset $S_0 \subset S$ known to contain an optimal solution. Moreover, the speed of convergence of the procedure is known to deteriorate with the volume of *P*, so *P* should be as small as possible in order to obtain reasonable computation times.

How to construct P will depend, of course, on the specific properties of the problem at hand. In particular, if (1.1) has the form

 $\max_{x \in \mathcal{A}} \Phi(F(x)), \qquad (1.2)$

for some $\Phi: F(S) \to \mathbb{R}$ componentwise non-decreasing, then it is well known that, if (1.1) has optimal solutions, then any dominator for the multiple-objective problem $\max_{x \in S} F(x)$ also contains optimal solutions for (1.1), [21]. In other words, we can take as S_0 any bounded dominator for the multiple-objective problem, and as P any superset of S_0 with the required geometry.

This property has been successfully exploited, among others, in [5, 21, 22, 30] for problems of Linear Regression and Continuous Location, in which the globalizing function Φ is an arbitrary non-decreasing function and the function F is componentwise concave. Our aim here is to address the (harder) problem in which the function F is componentwise (quasi)-convex, showing as main result (Proposition 19) that, under upper-semicontinuity assumptions, the search of a dominator can be restricted to the (k - 1)-dimensional faces of S.

The rest of this paper is structured as follows. In Section 2 we formally introduce the concept of dominators and discuss some general properties. These properties are used in Section 3 to address the one-dimensional case, for which dominators with certain minimality properties can be obtained.

Section 4 is devoted to show that, for multiple-objective multi-dimensional problems, one can construct dominators contained in low dimensional faces of the polytope S.

The paper ends with an application of these results to the construction of a dominator for a biobjective problem in Continuous Location. The reader is referred also to [25] for another successful application of the technique developed in this paper.

2. Dominators

Defining for each $x \in S$ the upper level set at x of F on S, $\mathscr{G}^{\geq}(x)$ as

$$\mathscr{G}^{=}(x) = \{ y \in S : F_i(y) \ge F_i(x) \text{ for all } i = 1, 2, \dots, k \},\$$

the set $\mathscr{C}[F; S]$ of efficient solutions may be defined by

$$\mathscr{E}[F; S] = \{x \in S : \text{If } y \in \mathscr{G}^{\geq}(x) \text{ then } x \in \mathscr{G}^{\geq}(y)\}$$
$$= \{x \in S : \text{If } y \in \mathscr{G}^{\geq}(x) \text{ then } F(x) = F(y)\}$$

DEFINITION 1. A set $S^* \subset S$ is said to be a dominator for (P[F; S]) iff for each $x \in S$ there exists some $x^* \in S^*$ which has, componentwise, a value not smaller than x. In other words, S^* is a dominator iff

 $(\forall x \in S) \exists x^* \in \mathscr{G}^{\geq}(x) \cap S^*$

Hereafter, the class of dominators for (P[F; S]) will be denoted by $\mathcal{D}[F; S]$. A direct consequence of the definition is the following:

PROPOSITION 2. One has

- 1. $S \in \mathcal{D}[F; S]$. In particular, $\mathcal{D}[F; S]$ is nonempty.
- 2. If $D \in \mathcal{D}[F; S]$ and D^* satisfies $D \subset D^* \subset S$, then $D^* \in \mathcal{D}[F; S]$.
- 3. For any class $\{S_i : j \in J\}$ of nonempty sets in \mathbb{R}^n ,

If
$$S_j^* \in \mathcal{D}[F; S_j] (\forall j \in J)$$
 then $\bigcup_{j \in J} S_j^* \in \mathcal{D}\left[F; \bigcup_{j \in J} S_j\right]$

4. For any class $\{S_i : j \in J\}$ of nonempty sets in \mathbb{R}^n ,

$$\bigcap_{j \in J} \mathcal{D}[F; S_j] \subset \mathcal{D}\left[F; \bigcup_{j \in J} S_j\right]$$

- 5. If $D \in \mathcal{D}[F; S]$, then
 - $\mathscr{D}[F;D] \subset \mathscr{D}[F;S]$.

By Proposition 2, the class $\mathcal{D}[F; S]$ is nonempty since the whole feasible set *S* is one of its elements. However *S* does not seem to be the most appropriate dominator since it possibly contains (too) many dominated alternatives, being too far from the ideal aim of a smallest possible dominator.

PROPOSITION 3. Suppose each F_j is upper-semicontinuous on S, then any class of compact nested dominators is closed under intersections. In other words: if (I, \leq) is a totally ordered set, and $\{D_i\}_{i \in I}$ is a class of compact dominators with $D_i \subset D_j$, $j \in I$, $i \leq j$, then

$$\bigcap_{i\in I} D_i \in \mathscr{D}[F;S] \, .$$

Proof. Take any $x \in S$. By the upper-semicontinuity of the functions F_j , all upper level sets $\{y \in S : F_j(y) \ge F_j(x)\}$ are closed, so their intersection $\mathcal{S} \ge (x)$ is also closed. By the definition of dominators and their compactness, it follows for each $i \in I$ that $\mathcal{S}^{\ge}(x) \cap D_i$ is a nonempty compact set, thus $\{\mathcal{S}^{\ge}(x) \cap D_i\}_{i \in I}$ constitutes a

class of nested compact sets. By compactness their intersection (i.e., $\mathscr{G}^{\geq}(x) \cap \bigcap_{i \in I} D_i$) is nonempty.

However, it is evident that the whole class $\mathscr{D}[F; S]$ is not closed under intersections (take constant functions F_1, \ldots, F_k , then any singletons $\{x\}, \{y\} \subset S$ are dominators, with empty intersection). Hence, a unique smallest dominator is unlikely to exist. We then relax the idea of smallest dominator by introducing the concept of (weak) minimal dominators. First define for each $x \in S$ the strict upper level set of F on S, $\mathscr{G}^>(x)$ as

 $\mathscr{G}^{>}(x) = \{ y \in S : F_i(y) > F_i(x) \text{ for all } i = 1, 2, \dots, k \}.$

DEFINITION 4. A dominator S^* is said to be minimal for (P[F; S]) iff no proper subset of S^* belongs to $\mathcal{D}[F; S]$. In other words, $S^* \subset S$ is minimal iff

 $(x, y \in S^*, x \neq y) \Rightarrow x \notin \mathscr{G}^{\geq}(y)$

A dominator $S^* \subset S$ is said to be weak minimal for (P[F; S]) iff

 $(x, y \in S^*) \Rightarrow x \notin \mathscr{G}^{>}(y)$

The class of minimal (respectively weak minimal) dominators for problem (P[F; S]) will be denoted by $\mathcal{D}_{M}[F; S]$ (respectively $\mathcal{D}_{WM}[F; S]$).

As a simple illustration of the concepts, consider the 2-dimensional 2-objective optimization problem $\max_{x \in S} F(x)$, depicted in Figure 2, where the feasible region *S* is the polyhedron in \mathbb{R}^2 with vertices a = (0, -3), b = (4, -1), c = (4, 0), d = (0, 3), and *F* is given by

$$F_1(x_1, x_2) = x_1$$

$$F_2(x_1, x_2) = |x_2|$$

Then, the Pareto optimal set is given by

$$\mathscr{E}[F;S] = \{d\} \cup [a,b],$$

Figure 2. S and F(S).

only two minimal dominators exist, namely

$$S_1 = [a, b]$$

 $S_2 =]a, b] \cup \{d\},$

whereas the polygonal S_3 ,

 $S_3 = \{d\} \cup [a, b] \cup [b, c]$

is also weak minimal.

We observe in this example that the two minimal dominators are proper subsets of $\mathscr{C}[F; S]$. This result is more general, as stated in the following:

PROPOSITION 5. Suppose that S is compact and each F_i is upper semicontinuous on S. Then

1. $\mathscr{E}[F; S]$ is a weak minimal dominator.

2. Minimal dominators exist.

3. $\mathscr{C}[F;S] = \bigcup_{S^* \in \mathscr{D}_M[F;S]} S^*$.

Proof. By the upper-semicontinuity assumption, for each $x \in S$ the set $\mathscr{G}^{\geq}(x)$ is compact. Hence, by Theorem 6 of Chapter 2 of [31] $\mathscr{C}[F; S]$ is a dominator, which, by construction, is also weak minimal. Hence 1 holds.

To show 2, define on $\mathscr{E}[F, S]$ the equivalence relation

 $\rho = \{(x, y) \in \mathscr{C}[F; S] \times \mathscr{C}[F; S] : F(x) = F(y)\}.$

Taking exactly one element in every equivalence class, we obtain a set S^* which is, by construction, a minimal dominator. Indeed, it is a dominator because $\mathscr{C}[F; S]$ is a dominator, as shown in Part 1. Moreover it is minimal: if there exists some dominator $M \subset S^*$, $M \neq S^*$, for any $x \in S^* \setminus M$ there would exist some $y \in M$ with $F(y) \ge F(x)$. But by construction of S^* we would have $F(y) \ne F(x)$ contradicting the fact that x is efficient. Hence, minimal dominators exist.

For Part 3, we first show that every efficient point is in some minimal dominator: let $x^* \in \mathscr{C}[F; S]$, and construct a subset S^* of $\mathscr{C}[F; S]$ taking exactly one element of every equivalence class (with respect to the equivalence relation ρ above), x^* being the element chosen from its equivalence class. Using the reasoning above, it is seen that S^* is a minimal dominator, and $x^* \in S^*$.

Finally to show that any minimal dominator is included in the efficient set, take $x^* \in S^*$, for some $S^* \in \mathcal{D}_M[F; S]$, and assume $x^* \notin \mathscr{C}[F; S]$. Then, there exists some $y \in S$ with $F(y) \ge F(x)$, and at least one inequality strict. Since $S^* \in \mathcal{D}_M[F; S]$, there must exist some $y^* \in S^*$ with $F(y^*) \ge F(y) \ge F(x^*)$, thus the set $S^* | \{x^*\}$ will also be a dominator, contradicting the minimality of S^* . Hence, $x^* \in \mathscr{C}[F; S]$. \Box

REMARK 6. The upper-semicontinuity assumption is needed in order to guarantee the nonvoidness of $\mathcal{D}_{WM}[F; S]$, as the following counterexample shows: Let $S \subset \mathbb{R}^2$ be the triangle whose endpoints are (-1, 0), (1, 0), (0, 1), and let $F_1 : S \to \mathbb{R}$ be

defined as $1/(1-x_2)$ on the relative interior of the two top-edges, and zero elsewhere. Since

$$\lim_{\substack{(x_1, x_2) \to (0, 1), \\ (x_1, x_2) \in bd(S)}} F_1(x_1, x_2) = +\infty$$

the maximum of F_1 on S is not attained, thus any $D \in \mathcal{D}[F_1; S]$ must contain a sequence of boundary points converging to (0, 1), implying that D contains points x, y with $F_1(x) > F_1(y)$. Hence, no weak minimal dominator exists.

3. Multiple-objective one-dimensional problems

In this section we address the multiple-objective problem (P[F; S]) when S is given as a finite union of compact intervals in \mathbb{R} , and each F_i is quasiconvex on each interval. We first discuss some properties of one-dimensional single-objective quasiconvex minimization problems, which are then used to tackle (P[F; S]), first when S reduces to a single compact interval and then in the general case. For the basic properties of quasiconvex functions we refer the reader to [1].

3.1. SINGLE-OBJECTIVE QUASICONVEX MINIMIZATION PROBLEMS ON AN INTERVAL

Let $I \subset \mathbb{R}$ be a nonempty compact interval, and let $g: I \to \mathbb{R}$ be quasiconvex. We will denote by $cl_I g$ the closure of g relative to I, namely

$$cl_{1} g(x) = \inf \{t : \exists \{x_{r}\}_{r} \subset I, \text{ such that } x_{r} \to x, g(x_{r}) \to t\}$$
$$= \liminf_{x_{r} \to x} g(x_{r})$$
(3.3)

LEMMA 7. One has:

- 1. $g(x) \ge \operatorname{cl}_{I} g(x)$ for all $x \in I$.
- 2. $\inf_{x \in I} g(x) = \inf_{x \in I} \operatorname{cl}_{I} g(x)$.
- 3. $cl_1 g$ is quasiconvex and lower-semicontinuous.
- 4. The set $\arg \min_{x \in I} \operatorname{cl}_{I} g(x)$ of optimal solutions to $\min_{x \in I} \operatorname{cl}_{I} g(x)$ is a nonempty compact subinterval of I.

Proof. 1 to 3 immediately follow from the definition of quasiconvexity and (3.3). By the lower semicontinuity of $cl_{I}g$, the set $\arg \min_{x \in I} g(x)$ is compact and nonempty; since $cl_{I}g$ is also quasiconvex, it follows that $\arg \min_{x \in I} cl_{I}g(x)$ is also convex, thus it is a compact interval, and Part 4 follows.

We recall that a function *g* is said to be *semistrictly quasiconvex*, [1], if it satisfies the following:

$$\begin{array}{c} g(a) < g(b) \\ c \in]a, b[\end{array} \right\} \Rightarrow g(c) < g(b)$$

The next lemma shows that, due to the quasiconvexity of g, the behavior of g and

 $cl_{I}g$ are closely related, the relationship being stronger for semistrictly quasiconvex g:

LEMMA 8. Let $x^* \in \arg \min_{x \in I} \operatorname{cl}_I g(x)$, and let $z_1, z_2 \in I$ such that $z_1 \in]x^*, z_2[$. One has:

1. $g(z_1) \leq g(z_2)$.

2. If g is also semistricity quasiconvex and $g(z_1) = g(z_2)$, then $]x^*, z_2[\subset \arg \min_{x \in I} g(x).$

Proof. By definition of $cl_{I}g$ and Part 2 of Lemma 7, one can take a sequence $\{x_r\}$ in *I* converging to x^* such that $\inf_r g(x_r) = \inf_{x \in I} g(x) = cl_{I}g(x^*)$.

Since $z_1 > x^*$, there exists r_0 such that $x_r < z_1$ for all $r \ge r_0$, thus

$$z_1 \in]x_r, z_2[$$
 for all $r \ge r_0$

Given $r \ge r_0$, if it were the case that $g(z_2) < g(z_1)$, then

$$g(z_2) < g(z_1)$$

$$\leq \max\{g(z_2), g(x_r)\}$$

Hence, $g(z_1) \leq g(x_r)$ for each $r \geq r_0$ thus one would have

$$g(z_2) < g(z_1)$$

$$\leq \inf_r g(x_r)$$

$$= \inf_{x \in I} g(x),$$

which is a contradiction. Hence, $g(z_2) \ge g(z_1)$, which shows 1.

To show 2, by the quasiconvexity of g it is enough to show that, if $g(z_1) = g(z_2)$, then $\{z_1, z_2\} \subset \arg \min_{x \in I} g(x)$. Suppose that, on the contrary, $g(z_1) = g(z_2) > \inf_{x \in I} g(x)$. Then, by Lemma 7,

$$g(z_1) = g(z_2)$$

> cl₁ g(x*),

and we could take a sequence $\{x_r\}$ converging to x^* with $g(x_r)$ converging to $cl_1 g(x^*)$ and $g(x_r) < g(z_2)$ for each *r*. Since $z_1 \in]x^*, z_2[$, it would follow that $z_1 \in]x_r, z_2[$ for some *r*, thus, by the strict quasiconvexity of *g*, $g(z_1) < g(z_2)$, which would be a contradiction. Hence $g(z_1) = g(z_2) = cl_1 g(x^*)$, showing that

$$[z_1, z_2] \subset \arg\min_{x \in I} g(x)$$
.

By the quasiconvexity of both g and $cl_{I}g$, and the optimality of x^* and $[z_1, z_2]$ for $\min_{x \in I} cl_{I}g(x)$, it then follows that

 $[x^*, z_1] \subset \arg\min_{x \in I} g(x) \,,$

and the result holds.

Another interesting property, which will be exploited in the sequel, states that, once problem $\min_{x \in I} \operatorname{cl}_{I} g(x)$ has been solved, any problem $\inf_{x \in J} g(x)$ with nested feasible interval $J \subset I$ is immediately solved. Indeed, denoting by i(J) the interior of J, one has:

PROPOSITION 9. Let $J := [a, b] \subset I$ be two compact intervals in \mathbb{R} . One has: 1. $cl_1 g \leq cl_1 g$ on J, and

$$cl_{I} g(x) = cl_{I} g(x) \quad for \ all \ x \in i(J)$$
(3.4)

2. If $(\arg \min_{x \in I} \operatorname{cl}_{I} g(x)) \cap i(J) \neq \emptyset$, then

$$\inf_{x \in J} g(x) = \min_{x \in I} \operatorname{cl}_{\mathrm{I}} g(x) \tag{3.5}$$

3. If $(\arg \min_{x \in I} \operatorname{cl}_{I} g(x)) \cap i(J) = \emptyset$, then

$$\inf_{x \in J} g(x) = \min\{g(a), g(b)\}$$
(3.6)

Proof. Part 1 is a direct consequence of the definition of the closure of g and Lemma 7.

For Part 2, let $x^* \in \arg \min_{x \in I} \operatorname{cl}_I g(x) \cap i(J)$; then, by Parts 1, 2 of Lemma 7 and Part 1 of this proposition,

$$\min_{x \in I} \operatorname{cl}_{I} g(x) = \operatorname{cl}_{I} g(x^{*})$$
$$= \operatorname{cl}_{J} g(x^{*})$$
$$= \min_{x \in J} \operatorname{cl}_{J} g(x)$$
$$= \inf_{x \in I} g(x)$$
$$\ge \inf_{x \in I} g(x)$$
$$= \min_{x \in I} \operatorname{cl}_{I} g(x)$$

Part 3 immediately follows from Lemma 8 if $\arg\min_{x\in I} \operatorname{cl}_{I} g(x)$ contains points in $I \mid J$. In the remaining case, $\arg\min_{x\in I} \operatorname{cl}_{I} g(x)$ consists of just one endpoint of J, say a. If a sequence $\{x_i\} \subset J$ exists converging to a with $g(x_i)$ converging to $\min_{x\in I} \operatorname{cl}_{I} g(x) = \operatorname{cl}_{I} g(a)$, then the result follows from the definition of $\operatorname{cl}_{I} g$. Otherwise there exists $x^* < a$ with $g(x^*) < g(a)$ and then the quasiconvexity of gimplies that, for any $x \in J$,

$$g(x^*) < g(a)$$

$$\leq \max\{g(a), g(x)\},\$$

thus $g(x) \ge g(a)$, showing (3.6).

3.2. MULTIPLE-OBJECTIVE QUASICONVEX MAXIMIZATION PROBLEMS ON AN INTERVAL

In this subsection we show how to find a (weak) minimal dominator for the problem (P[F; I]) when I = [a, b] is a compact interval of \mathbb{R} .

By Lemma 7, for each i = 1, 2, ..., k, the set $\arg \min_{x \in I} \operatorname{cl}_{I} F_{i}(x)$ is a nonempty closed subinterval of *I*, thus it has the form $[\alpha^{i}, \beta^{i}]$.

LEMMA 10. Let $x \in]a, \min_{1 \le i \le k} \beta^i$ (respectively $x \in]\max_{1 \le i \le k} \alpha^i, b$ (). Then, $a \in \mathscr{G}^{\geq}(x)$ (respectively $b \in \mathscr{G}^{\geq}(x)$).

Proof. Given $x \in]a, \min_{1 \le i \le k} \beta^i[$ and $j \in \{1, 2, ..., k\}$, it follows that $x < \beta^j$, thus, by the definition of β^j there exists $y^j \in \arg \min_{y \in I} \operatorname{cl}_{\mathrm{I}} F_j(y)$ such that $x \in]a, y^j[$. Hence, by Lemma 8, $F_j(x) \le F_j(a)$ for all j, showing that $a \in \mathscr{S}^{\geq}(x)$. The other case is similar.

PROPOSITION 11. Define D_I^0 as

$$D_I^0 = \{a, b\} \cup [\min_{1 \le i \le k} \beta^i, \max_{1 \le i \le k} \alpha^i],$$

where it is understood that $[\min_{1 \le i \le k} \beta^i, \max_{1 \le i \le k} \alpha^i] = \emptyset$ if $\min_{1 \le i \le k} \beta^i > \max_{1 \le i \le k} \alpha^i$. Define also

$$D_{I} = \begin{cases} \{\alpha\}, \text{ if } F(a) \ge F(b) \\ \{b\}, \text{ if } F(b) \ge F(a), F(b) \ne F(a) \\ D_{I}^{0} \setminus (\{x \ne a : a \in \mathcal{S}^{\geqslant}(x)\} \cup \{x \ne b : b \in \mathcal{S}^{\geqslant}(x)\}), \text{ otherwise} \end{cases}$$

One then has

- 1. $D_I^0 \in \mathscr{D}[F;I]$.
- 2. $D_I \in \mathcal{D}_{WM}[F; I]$.
- 3. If $a \in \mathscr{G}^{\geq}(b)$, $b \in \mathscr{G}^{\geq}(a)$, or each F_i is semistricity quasiconvex on [a, b], then $D_I \in \mathscr{D}_M[F; I]$.

Proof. Part 1 follows from Lemma 10. To show 2, if $a \in \mathscr{G}^{\geq}(b)$ one would have for each $x \in I$ and $i \in \{1, 2, ..., k\}$ that

$$F_i(x) \le \max\{F_i(a), F_i(b)\}\$$

= $F_i(a)$,

thus $a \in \mathscr{G}^{\geq}(x)$; hence $D_I = \{a\} \in \mathscr{D}[F; I]$, which is (weak) minimal being a singleton. A similar result is obtained when $b \in \mathscr{G}^{\geq}(a)$, thus to finish the proof of 2, we assume that $a \notin \mathscr{G}^{\geq}(b)$ and $b \notin \mathscr{G}^{\geq}(a)$. In particular, $\{a, b\} \subset D_I$. Given $x \in [a, b]$, it follows from Part 1 that there exists some $y \in \mathscr{G}^{\geq}(x) \cap D_I^0$; if $y \notin D_I$, then $y \notin \{a, b\}$ and either $a \in \mathscr{G}^{\geq}(y) \subset \mathscr{G}^{\geq}(x)$ or $b \in \mathscr{G}^{\geq}(y) \subset \mathscr{G}^{\geq}(x)$, hence $\emptyset \neq \{a, b\} \cap \mathscr{G}^{\geq}(x) \subset D_I \cap \mathscr{G}^{\geq}(x)$; if $y \in D_I$ then $D_I \cap \mathscr{G}^{\geq}(x) \neq \emptyset$. Thus $D_I \in \mathscr{D}[F; S]$.

To show that $D_I \in \mathcal{D}_{WM}[F; I]$, suppose that, by contradiction, $x, y \in D_I$ exist such

that $x \in \mathscr{G}^{>}(y)$. Since either $x \in [a, y[\text{ or } x \in]y, b]$, we can assume w.l.o.g. that $x \in [a, y[$. Then, for each *i*

$$F_i(y) < F_i(x)$$

$$\leq \max\{F_i(a), F_i(y)\}$$

thus $F_i(y) < F_i(a)$ for each *i*. Hence $a \in \mathscr{G}^>(y)$, thus $y \notin D_I$, which is a contradiction. Hence $D_I \in \mathscr{D}_{WM}[F; I]$, and this shows 2.

The minimality property of Part 3 was shown above for $a \in \mathscr{G}^{\geq}(b)$ or $b \in \mathscr{G}^{\geq}(a)$, so we show now the case of semistrictly quasiconvex functions F_i . Suppose that, on the contrary, $x, y \in D_i$ exist such that $x \in \mathscr{G}^{\geq}(y) \setminus \{y\}$. Since $y \in D_i$, one gets that $x \notin \{a, b\}$; then, $x \in]a, y[\cup]y, b[$, thus w.l.o.g. we assume $x \in]a, y[$. Since $x \in D_i \setminus \{a\}, a \notin \mathscr{G}(x)$, thus there exists some *i* with $F_i(a) < F_i(x)$, thus

$$F_i(a) < F_i(x)$$

$$\leq \max\{F_i(a), F_i(y)\},\$$

thus $F_i(x) \leq F_i(y)$, and, since $x \in \mathscr{S}^{\geq}(y)$, $F_i(x) = F_i(y)$, which contradicts the semistrict quasiconvexity of F_i . Hence, $D_I \in \mathscr{D}_M[F; I]$.

REMARK 12. In Part 1 of Proposition 11, a dominator has been constructed, consisting of at most three intervals, two of which are reduced to a point. Moreover, such a dominator is easily derived once all the single-objective one-dimensional problems $\min_{x \in I} \operatorname{cl}_{I} F_{i}(x)$, i = 1, 2, ..., k have been solved.

On the other hand, it follows from the quasiconvexity of the functions F_i that the set $\{x \in I : a \in \mathscr{S}^{\geq}(x)\}$ (respectively $\{x \in I : b \in \mathscr{S}^{\geq}(x)\}$) is an interval having *a* (respectively *b*) as one of its endpoints. This implies that the set D_i , shown in Part 2 of Proposition 11 to be weak minimal, also consists of at most three intervals, two of which are reduced to the endpoints of *I*.

In the case of continuous F_i , finding the set $\{x : a \in \mathscr{G}^{\geq}(x)\}$ is reduced to finding, for each i = 1, ..., k, the highest root of the nonlinear equation $F_i(x) = F_i(a)$, which, due to the quasiconvexity of F_i can be solved with any prespecified accuracy by e.g. binary search.

REMARK 13. For the biobjective case (k = 2), the interval $[\min_k \beta^k, \max_k \alpha^k]$ is, by construction, such that, within it, both F_1 and F_2 are monotonic: one nondecreasing and the other nonincreasing. Hence, for the biobjective case, there is no loss of generality in assuming that functions F_i are not only quasiconvex but also quasiconcave on the intervals $[\min_k \beta^k, \max_k \alpha^k]$.

EXAMPLE 1. Let I = [0, 4], and consider the three quasiconvex functions F_1, F_2, F_3 defined as

Figure 3. Functions of Example 1.

$$F_{1}(x) = |4e^{-x} - 2|$$

$$F_{2}(x) = \frac{2(x - 3)^{2}}{1 + (x - 3)^{2}}$$

$$F_{3}(x) = \min\left\{1, 2 - \frac{x}{5}\right\},$$

depicted in Figure 3.

In order to construct the dominator(s) described in Proposition 11, we must determine first the set $[\alpha_i, \beta_i]$ of minima on *I* for each F_i . These are respectively $\{\ln 2\} = \{0.6931\}, \{3\}$ and [0, 4]. This yields

i	$lpha_i$	$oldsymbol{eta}_i$
1 2 3	0.6931 3	0.6931 3
3	0	4

For this we obtain the dominator

$$D_I^0 = \{0, 4\} \cup [0.6931, 3]$$

Moreover, by comparing the endpoints, we get

F(0) = (2, 1.8, 1)F(4) = (1.9267, 1, 1), thus $F(0) \ge F(4)$. Hence, by Proposition 11, the set $D_I = \{0\}$ is not only a weak minimal dominator but also a minimal dominator.

Suppose now that the feasible region is the interval I = [5, 9]. In this case we obtain

i	$lpha_{i}$	$oldsymbol{eta}_i$
1	5	5
2	5	5
3	9	9

From this it is easily seen that

$$D_I^0 = D_I = [5, 9]$$
.

Since all the functions are semistrictly quasiconvex in *I*, it follows that *I* is a minimal dominator for $\max_{x \in I} F(x)$.

Finally, for I = [4, 9] we similarly obtain $D_I^0 = D_I = [4, 9]$, but in this case D_I^0 is not a minimal dominator, since [5, 9] is a strictly included dominator (which may be seen to be minimal).

3.3. MULTI-OBJECTIVE QUASICONVEX MAXIMIZATION PROBLEMS ON A SET OF INTERVALS

As a natural extension of the model presented in Section 3.2, we address here the problem

 $\max_{x\in X} F(x) ,$

where

- $X = \bigcup_{1 \le i \le t} I_i$, with $\{I_i\}_{1 \le i \le t}$ being a family of compact (possibly degenerate) intervals of the real line, not necessarily disjoint,
- *F*₁,..., *F_k* are quasiconvex on each *I_i*, *i* = 1,..., *t*. (Note that this is a weaker assumption than each component of *F* to be quasiconvex in the convex hull of ∪_{1≤i≤t} *I_i*).

By Proposition 2, if one finds, for each i = 1, 2, ..., t some dominator $D_i \in \mathscr{D}[F; I_i]$, then any $D \in \mathscr{D}[F; \bigcup_{1 \le i \le t} D_i]$ would serve as a dominator for $(P[F; \bigcup_{1 \le i \le t} I_i])$. Moreover, if a (weak) minimal dominator is sought, redundant alternatives should be purged, either in the construction of the sets D_i (by imposing e.g. $D_i \in \mathscr{D}_{WM}[F; I_i]$) or when they are merged to produce a (small) final dominator.

To approximate this goal one can use a Branch-and-Bound scheme, similar to the one described in [14]: we start with a list \mathscr{L} of compact intervals, the union of which is known to be a dominator for $(P[F; \bigcup_{1 \le i \le l} I_i])$, and then refine iteratively

the elements in \mathcal{L} , by making pairwise comparisons, in such a way that, at any stage, one has

$$\bigcup_{I \in \mathscr{L}} I \in \mathscr{D}[F; \bigcup_{1 \leq i \leq t} I_i]$$

To perform comparisons among elements in \mathscr{L} we introduce, for each interval I := [a, b] contained in some I_i , the vectors M(I), $UB(I) \in \mathbb{R}^k$ of evaluations at the midpoint of I and a componentwise upper bound of F, respectively:

$$M(I)_{j} = F_{j}\left(\frac{a+b}{2}\right)$$
$$UB(I)_{j} \ge \max_{x \in I} F_{j}(x)$$

REMARK 14. By the quasiconvexity of F_j on $I \subset I_i$, it follows that one may choose

$$UB(I)_{i} = \max\{F_{i}(a), F_{i}(b)\} \quad j = 1, 2, \dots, k$$

Note also that for $I = \{a\}$ we have M(I) = UB(I).

From the definitions of the vectors M and UB one immediately obtains the following way to check whether some interval J can be discarded from further consideration in the Branch-and-Bound scheme.

PROPOSITION 15. Given nonempty compact intervals I, J, suppose F is continuous on I and on J. Then the following statements are equivalent:

1. $I \in \mathcal{D}[F; J]$, i.e. for any $y \in J$ there exists $x \in I$ with $F(x) \ge F(y)$

2. $0 \leq \min_{y \in J} \max_{x \in I} \min_{1 \leq j \leq k} (F_j(x) - F_j(y)).$ This is implied by both

$$\bigcap_{1 \le j \le k} \{ x \in I : F_j(x) \ge UB(J)_j \} \neq \emptyset$$
(3.7)

and

$$0 \leq \min_{1 \leq j \leq k} \left(M(I)_j - UB(J)_j \right), \tag{3.8}$$

while (3.8) always implies (3.7).

Proof. The equivalence between 1 and 2 is evident. Since (3.7) is equivalent to the existence of some $x \in I$ with

$$F(x) \ge F(y) \forall y \in J, \tag{3.9}$$

it clearly implies 1. On the other hand, (3.8) is equivalent to (3.9) for x fixed to the midpoint of *I*. Hence, (3.8) implies (3.7) and the result follows.

Although condition (3.8) is easier to implement, the stronger test (3.7) is also of practical interest since this intersection set, if nonempty, has a simple structure due to the quasiconvexity of F, as indicated by the following simple result:

PROPOSITION 16. One has for any values c_i

1. Each set $\{x \in I : F_j(x) \ge c_j\}$ consists of at most two intervals, each with an endpoint of I as one of its endpoints.

2. For $k_0 = 1, 2, ..., k$, the set $\bigcap_{1 \le j \le k_0} \{x \in I : F_j(x) \ge c_j\}$ is a collection of $n(k_0)$ intervals, with

 $n(1) \le 2$ $n(k_0) \le n(k_0 - 1) + 1$, $k_0 = 2, 3, \dots, k$

The basic steps of the Branch-and-Bound procedure are described below:

```
Algorithm 1Initialization:Set \mathscr{L} := \{cl(D_{I_j}), j = 1, \dots, t\}Set r := 1Iteration r = 1, 2, \dots, :for all I \in \mathscr{L} doIf, for some J \in \mathscr{L}, J \neq I, (3.8) or (3.7) hold, thendelete I from \mathscr{L};Else, if I is non-degenerate dosplit I into I_1 and I_2 at the midpoint of I;replace I by I_1 and I_2 in \mathscr{L};GoTo Iteration r+1
```

Before discussing the output of the algorithm in the limit ($r = \infty$), let us present an illustrative example.

EXAMPLE 1 (Cont.)

Let *F* be the three-objective one-dimensional function described in the first part of the Example, and assume now that the feasible region *X* consists of the two compact segments $I_1 = [0, 4]$, and $I_2 = [5, 9]$.

In the Initialization phase, we must construct the sets $cl(D_{I_j})$, j = 1, 2. This was already done in the first part of the Example, thus we start with the list

 $\mathcal{L} = \{\{0\}, [5, 9]\}.$

Then, we go to Iteration 1. For each interval I (degenerate or not) in \mathcal{L} , the vectors M(I), UB(I) must be constructed. (Observe that this task becomes trivial using Remark 14 above.) Evaluations at the endpoints, 0, 5, 9 and the midpoint 7 yield

F(0) = (2, 1.8000, 1) F(5) = (1.9730, 1.6000, 1) F(7) = (1.9964, 1.8824, 0.6000)F(9) = (1.9995, 1.9459, 0.2000)

We then obtain

Ι	M(I)	UB(I)
{0}	(2, 1.8000, 1)	(2, 1.8000, 1)
[5, 9]	(1.9964, 1.8824, 0.6000)	(1.9995, 1.9459, 1)

We will only use the simplest test, namely, (3.8) in the algorithm.

Since no pair of intervals in \mathcal{L} satisfies condition (3.8), we go to Iteration 2 with the list of intervals

 $\mathcal{L} = \{\{0\}, [5, 7], [7, 9]\}.$

Two new midpoints appear, namely, 6 and 8, with objective values

F(6) = (1.9901, 1.8000, 0.8000)F(8) = (1.9987, 1.9231, 0.4000).

This enables us to update the table of vectors M, UB yielding

Ι	M(I)	UB(I)
{0}	(2, 1.8000, 1)	(2, 1.8000, 1)
[5, 7]	(1.9901, 1.8000, 0.8000)	(1.9964, 1.8824, 1)
[7, 9]	(1.9987, 1.9231, 0.4000)	(1.9995, 1.9459, 0.6000)

As in the previous iteration, no pair of intervals satisfies condition (3.8), and we go to Iteration 3 with the updated list of intervals

 $\mathcal{L} = \{\{0\}, [5, 6], [6, 7], [7, 8], [8, 9]\}$

The new midpoints give objective values

F(5.5) = (1.9837, 1.7241, 0.9000) F(6.5) = (1.9940, 1.8491, 0.7000) F(7.5) = (1.9978, 1.9059, 0.5000)F(8.5) = (1.9992, 1.9360, 0.3000)

With this, our new table of vectors M, UB is given by

Ι	M(I)	UB(I)
{0} [5, 6] [6, 7] [7, 8] [8, 9]	(2, 1.8000, 1) (1.9837, 1.7241, 0.9000) (1.9940, 1.8491, 0.7000) (1.9978, 1.9059, 0.5000) (1.9992, 1.9360, 0.3000)	(2, 1.8000, 1) (1.9901, 1.8000, 1) (1.9964, 1.8824, 0.8000) (1.9987, 1.9231, 0.6000) (1.9995, 1.9459, 0.4000)

In this case, the sufficient condition for dominance is satisfied for the pair of intervals $\{0\}$ and [5, 6], so the interval [5, 6] can be excluded for further considerations.

We would then obtain a reduced list

 $\mathcal{L} = \{\{0\}, [6, 7], [7, 8], [8, 9]\}$

to start Iteration 4, if desired.

The following theorem shows that the successive steps of the algorithm above provide a sequence of nested compact dominators, converging to a dominator which, under mild further assumptions on the functions F_i , enjoys minimality properties:

PROPOSITION 17. Denote by D_r the union of all intervals of \mathcal{L} at the end of iteration r, and by D^* the compact set

$$D^* = \bigcap_{r=1}^{r} D_r$$
1. $D_1 = X = \bigcup_{1 \le i \le t} I_i \text{ and } D_{r+1} \subset D_r \text{ for all } r.$
2. If F is upper-semicontinuous, then
$$D^* \in \mathscr{D}[F;X]$$
3. Moreover, if F is continuous, then
$$(3.10)$$

$$D^* \in \mathcal{D}_{\mathcal{W}\mathcal{M}}[F;X] \,. \tag{3.11}$$

Proof. The first property is evident from the algorithm.

By construction, each D_r is compact, thus their intersection is also compact. Moreover, $D_r \in \mathcal{D}[F; X]$, thus, by Proposition 3, (3.10) follows.

To show (3.11), suppose, on the contrary, that there exist $x_1, x_2 \in D^*$ with $x_1 \in \mathscr{S}^{>}(x_2)$. If, for each i = 1, 2 and $r = 1, 2, \ldots$, we denote by \mathscr{I}_i^r the class of intervals I_i^r in the list at stage r with $x_i \in I_i^r$, it will follow from the splitting process that there exists some r_0 such that, for each $r \ge r_0$, and each $I_i^r \in \mathscr{I}_i^r$

$$x_1 \not\in I_2^r$$
, and $x_2 \not\in I_1^r$

Since the functions F_i are continuous, thus uniformly continuous on X, there would exist some r such that for each $I_i^r \in \mathcal{I}_i^r$

$$F_j(x) > F_j(y)$$
 for all $x \in I_1^r$ and $y \in I_2^r$, $j = 1, 2, \dots, k$

Hence $UB(I_2^r) < M(I_1^r)$, implying that I_2^r (thus x_2) would have been deleted prior to stage *r* by (3.8), thus $x_2 \notin D^*$, which is a contradiction.

4. Multiple-objective multi-dimensional problems

For the single-objective case (i.e., if k = 1 in $(P[F_1; S])$), it is a well-known result of Global Optimization that, if *S* is a polytope and F_1 is quasiconvex on *S*, then the set of vertices of *S* is a dominator for $(P[F_1; S])$, [15].

In other words, if, for j = 0, 1, ..., n, \mathcal{F}^j denotes the set of points of a polytope S contained in some *j*-dimensional face of S, then

$$\mathscr{F}^0 \in \mathscr{D}[F_1; S] \tag{4.12}$$

The next proposition extends assertion (4.12) to multiple-objective quasiconvex problems. To show it, we will use the following

LEMMA 18. Let P be a polyhedron in \mathbb{R}^n , and let H_1, H_2, \ldots, H_t be closed halfspaces in \mathbb{R}^n . If x^* is an extreme point of $P \cap \bigcap_{1 \le i \le t} H_i$, then x^* belongs to some face of P with dimension not greater than t.

Proof. Let P be represented as

$$P = \{x \in \mathbb{R}^n : a'_r x \leq b_r \text{ for all } r \in R\}$$

for some finite index set R, and let each H_i be given as

$$\{x \in \mathbb{R}^n : c'_i x \leq d_i\}$$

Define the sets of active indices $R(x^*)$ and $T(x^*)$ as

$$R(x^*) = \{r \in R : a'_r x^* = b_r\}$$

$$T(x^*) = \{i, 1 \le i \le t : c'_i x^* = d_i\}$$

Then x^* belongs to the face F of P,

$$F = P \cap \{x \in \mathbb{R}^n : a'_r x = b_r \; \forall r \in R(x^*)\}$$

We will show that *F* has dimension not greater than *t*. Indeed, since x^* is, by assumption, an extreme point of $P \cap \bigcap_{1 \le i \le t} H_i$, then the set of vectors $\{a_r\}_{r \in R(x^*)} \cup \{c_r\}_{i \in T(x^*)}$ has rank

 $\operatorname{rank}(\{a_r\}_{r \in R(x^*)} \cup \{c_i\}_{i \in T(x^*)}) = n$

Hence, denoting by $|T(x^*)|$ the cardinality of $T(x^*)$, one obtains

$$\operatorname{rank}(\{a_r\}_{r \in R(x^*)}) \ge n - |T(x^*)|$$
$$\ge n - t,$$

thus the dimension of F cannot be greater than t.

PROPOSITION 19. Let S be a polytope in \mathbb{R}^n , let $k \leq n + 1$, and let F_1, \ldots, F_k be quasiconvex functions on S, all but possibly one of which are upper-semicontinuous. Then

$$\mathscr{F}^{k-1} \in \mathscr{D}[F;S] \tag{4.13}$$

Proof. Without loss of generality we assume that $F_1, F_2, \ldots, F_{k-1}$ are uppersemicontinuous on S. We will show that, for any $x \in S$,

$$\mathscr{G}^{\geq}(\mathbf{x}) \cap \widetilde{\mathscr{F}}^{k-1} \neq \emptyset \tag{4.14}$$

Let $x \in S$, and denote by $\mathcal{A}(x)$ the index set

$$\mathcal{A}(x) = \{i, 1 \le i \le k - 1, F_i(y) < F_i(x) \text{ for some } y \in S\}.$$

If $\mathcal{A}(x)$ is empty, we would have

$$F(y) \ge F(x) \forall y \in S,$$

thus any vertex y^* of *S* satisfies $y^* \in \mathscr{G}^{\geq}(x)$. Hence

 $\emptyset \neq \mathscr{G}^{\geq}(x) \cap \mathscr{F}^0 \subset \mathscr{G}^{\geq}(x) \cap \mathscr{F}^{k-1},$

showing (4.14).

We consider now the case $\mathscr{A}(x) \neq \emptyset$. For each $i \in \mathscr{A}(x)$, the convex set $\{y \in S : F_i(y) < F_i(x)\}$ is open in S (its complement is closed due to the uppersemicontinuity of F_i) and does not contain x. Hence, there exists some nonzero vector u^i such that

$$\langle u', y-x \rangle > 0$$
 for all $y \in S$ with $F_i(y) < F_i(x)$, (4.15)

where $\langle \cdot, \cdot \rangle$ stands for the usual scalar product in \mathbb{R}^n .

Consider the polyhedron S(x),

$$S(x) = S \cap \{ y \in \mathbb{R}^n : \langle u^i, y - x \rangle \leq 0, \quad \forall i \in \mathcal{A}(x) \},\$$

which is nonempty because $x \in S(x)$. Consider the optimization problem

$$\max_{y \in S(x)} F_k(y) \tag{4.16}$$

Since F_k is quasiconvex on the nonempty polyhedron S(x), (4.16) has an optimal solution at some vertex y^* of S(x). We will show that

$$y^* \in \mathscr{F}^{k-1} \cap \mathscr{S}^{\geq}(x) \tag{4.17}$$

Since y^* is a vertex of S(x), Lemma 18 implies that

$$y^* \in \mathcal{F}^{|\mathcal{A}(x)|} \subset \mathcal{F}^{k-1} \tag{4.18}$$

Since $x \in S(x)$ and y^* is optimal for (4.16),

$$F_k(y^*) \ge F_k(x) \tag{4.19}$$

By definition of $\mathcal{A}(x)$,

$$F_i(y^*) \ge F_i(x) \ \forall i \in \{1, 2, \dots, k-1\} | \mathcal{A}(x)$$
 (4.20)

and by (4.15) and the fact that $y^* \in S(x)$,

$$F_i(y^*) \ge F_i(x) \ \forall i \in \mathcal{A}(x) \tag{4.21}$$

Joining (4.18–4.21), (4.17) holds, thus $\mathscr{G}^{\geq}(x) \cap \mathscr{F}^{k-1} \neq \emptyset$, as asserted.

REMARK 20. The assumption of upper-semicontinuity of at least k - 1 functions is not superfluous, as the following example shows: let k = 2, n = 2, $S = [0, 1] \times [0, 1]$, and the functions F_1 , F_2 defined as

$$F_1(x) = \begin{cases} 0, & \text{if } x_2 > \frac{1}{2} \text{ or } x = (0, \frac{1}{2}) \\ 1, & \text{otherwise} \end{cases} \quad F_2(x) = \begin{cases} 0, & \text{if } x_2 > \frac{1}{2} \text{ or } x = (1, \frac{1}{2}) \\ 1, & \text{otherwise} \end{cases}$$

Both functions are quasiconvex but are not upper-semicontinuous; let $x^* = (\frac{1}{2}, \frac{1}{2})$. It is easily seen that

$$\mathscr{G}^{\geq}(x^*) = \{ (\lambda, \frac{1}{2}) : 0 < \lambda < 1 \}$$

thus $\mathscr{G}^{\geq}(x^*) \cap \mathscr{F}^1 = \emptyset$, showing that \mathscr{F}^1 is not a dominator.

As a consequence of Propositions 19 and 2, one obtains

COROLLARY 21. Let S be the union of t polytopes S_1, \ldots, S_t in \mathbb{R}^n . Let F_1, \ldots, F_k be $k \leq n + 1$ real-valued functions on S. On each S_j , let all F_i be quasiconvex and all but possibly one F_i be lower-semicontinuous. Then the union of all k - 1-faces of all S_j is a dominator for P[F; S].

Proposition 19 also enables us to derive localization results for single-objective problems.

COROLLARY 22. Let S be the union of t polytopes S_1, \ldots, S_t in \mathbb{R}^n . Let F_1, \ldots, F_k be $k \leq n+1$ real-valued functions on S, quasiconvex on each S_j . For any componentwise nondecreasing $\Phi: F(S) \to \mathbb{R}$ such that Problem

 $\max_{x \in \mathcal{S}} \Phi(F_1(x), F_2(x), \dots, F_k(x))$

54

has an optimal solution, the union of the set of k - 1-faces of all S_j also contains an optimal solution.

In particular, for F_1, F_2, \ldots, F_k linear fractional functions with positive denominators on a polytope *S*, which are well-known to be quasiconvex (see e.g. [1], p. 165) and $\Phi(s_1, s_2, \ldots, s_k) = s_1 + s_2 + \cdots + s_k$, or $\Phi(s_1, s_2, \ldots, s_k) = \max\{s_1, s_2, \ldots, s_k\}$, we obtain

COROLLARY 23. The minimum of the sum (respect. the maximum) of k linear fractional functions with positive denominators over a polytope S in dimension $n \ge k - 1$ is attained at some k - 1-face of S.

This generalizes the results known for the case k = 2 (see the review of [27] and the references therein). For an application see [25].

REMARK 24. For biobjective problems (k = 2), since both F_j are quasiconvex on each edge, after embedding such edges as compact intervals of the real line, one can use the results in Section 3 to design an algorithm converging to a weak minimal dominator.

For the case of general k, Proposition 19 seems at the moment to be mainly of theoretical interest: In principle, Algorithm 1 can be generalized to the k-dimensional case, by replacing intervals by e.g. simplices, although the corresponding bounding scheme does not extend to the general case, and less efficient schemes, such as those proposed in [4, 14], should be used.

Nevertheless, this kind of localization results can be used to design new heuristic resolution methods of problems of the form $\min_{x \in S} \Phi(F(x))$, where *k*, the number of components of *F*, is very small, and, in particular, much smaller than the dimension *n* of the space.

We know then that the search for optimal solutions can be reduced to the k - 1-dimensional faces of S, so that algorithms which alternate a global search in a given low-dimensional face with moves to adjacent low-dimensional faces, can be used.

5. Application: Location of a semi-obnoxious facility

Let $S = S_1 \cup S_2 \cup \cdots \cup S_i$, each S_i being a convex polygon in \mathbb{R}^2 . Two finite subsets \mathscr{A}^+ , \mathscr{A}^- of \mathbb{R}^2 are given. Associated with each $a \in \mathscr{A}^+$ we have a concave function $g_a : [0, +\infty) \to \mathbb{R}$ and a polyhedral gauge γ_a , [9, 10, 19], i.e., a Minkowski functional whose unit ball is a polytope.

Let $h: [0, +\infty) \to \mathbb{R}$ be a nonincreasing function, and consider the biobjective problem

$$\min_{x \in S} (F_1(x), F_2(x)), \tag{5.22}$$

where

$$F_1(x) = \sum_{a \in \mathcal{A}^+} g_a(\gamma_a(x-a))$$

$$F_2(x) = \max_{a \in \mathcal{A}^-} h(||x-a||),$$

 $\|\cdot\|$ being the euclidean norm.

This problem has its motivation in Continuous Location of semidesirable facilities, see [17, 23] for an introduction to Continuous Location in general and [6, 24] for semidesirable facility location models: A facility is to be located within region *S*, and will interact with individuals who want the facility close (those in \mathcal{A}^+) and others who want the facility far (those in \mathcal{A}^-). Interactions with \mathcal{A}^+ provide the first objective in (5.22): the minimization of the total transportation cost $F_1(x)$, where transportation cost from $a \in \mathcal{A}^+$ to *x* is given by a concave function g_a of the distance from *a* to *x*, the latter measured by the polyhedral gauge γ_a , [29].

On the other hand, interactions of the facility with \mathscr{A}^- provide the second objective F_2 , which measures the highest damage suffered by points in \mathscr{A}^- , where the damage suffered by $a \in \mathscr{A}^-$ is assumed to be given by a nonincreasing function h of the Euclidean distance from a to x, see [11, 24].

In practice, the two objectives of (5.22) are aggregated into a single criterion, yielding a problem of the form

$$\max \Phi\left(-\sum_{a \in \mathcal{A}^+} g_a(\gamma_a(x-a)), \max_{a \in \mathcal{A}^-} h(||x-a||)\right),$$
(5.23)

[6, 24] for some globalizing Φ , and the resulting problem (multimodal, as a rule), can be tackled e.g. by the 2-dimensional Branch and Bound method described in [13]. However, as shown below (Proposition 25), the search of an optimal solution for (5.23) can be restricted to a series of segments, thus (5.23) can be solved by simply using single-variable Global-Optimization techniques, [2, 12], which are usually much faster than their two-variable counterparts.

In order to obtain a dominator for (5.22) one should observe first that, since h is assumed to be nonincreasing, it suffices to obtain a dominator for problem

$$\max_{x \in S} \left(-F_1(x), \min_{a \in \mathcal{A}^-} \|x - a\| \right)$$
(5.24)

(in fact, if *h* is decreasing, both problems are equivalent). Let us rewrite now (5.24) within our framework. For polyhedral gauges, using the concept of *elementary* convex set of [10], one can obtain a subdivision \mathscr{C} of the plane into polyhedra in such a way that, within each $C \in \mathscr{C}$, each gauge γ_a is affine, see [9, 10] for further details. For instance, if each γ_a is the l_1 norm, then the polyhedral subdivision of the plane is obtained after constructing horizontal and vertical lines through each $a \in \mathscr{A}^+$, yielding a total of $O(|\mathscr{A}^+|^2)$ cells.

Moreover, defining, for each $a \in \mathscr{A}^-$, the Voronoi cell V(a) associated with a as

$$V(a) = \{x \in \mathbb{R}^2 : ||x - a|| \le ||x - b|| \text{ for all } b \in \mathscr{A}^-\},\$$

the class $\mathscr{V} = \{V(a) : a \in \mathscr{A}^-\}$ also constitutes a polyhedral subdivision of \mathbb{R}^2 in $O(|\mathscr{A}^-|)$ polyhedra, which can be efficiently constructed in $O(|\mathscr{A}^-|\log|\mathscr{A}^-|)$, see e.g. [20, 26].

Consider now the class \mathscr{Z} of all Z of the form

 $S_i \cap C \cap V(a)$

for some *i*, $1 \le i \le t$, $C \in \mathscr{C}$ and $a \in \mathscr{A}^-$ which are nonempty. On each $Z \in \mathscr{Z}$, we have that $-F_1$ is convex (it is the composition of the convex function $-\sum_{a \in \mathscr{A}^+} g_a$ with the affine functions (within Z!) γ_a , and F_2 is also convex (recall that, for $Z \in \mathscr{Z}$ fixed, there exists some $a^* \in \mathscr{A}^-$ such that $\min_{a \in \mathscr{A}^-} ||x - a|| = ||x - a^*||$). Hence, rewriting (5.24) as

$$\max_{x \in \bigcup_{Z \in \mathscr{X}^{Z}}} \left(-F_{1}(x), \min_{a \in \mathscr{A}^{-}} \left\| x - a \right\| \right),$$

we can use Corollary 21 to obtain

PROPOSITION 25. The edges of the sets in \mathscr{Z} constitute a dominator for Problem (5.22).

After embedding the edges of polytopes in \mathscr{Z} as compact intervals of the real line, one can use the algorithm described in Section 3.3 to reduce the size of such dominator, converging (in case of decreasing *h*) to a weak minimal dominator.

References

- 1. Avriel, M., Diewert, W.E., Schaible, S. and Zang, I. (1988), *Generalized Concavity*, Plenum Press, New York/London.
- 2. Blanquero, R. (1999), Localización de servicios en el plano mediante técnicas de optimización d.c. Unpublished Ph.D., Universidad de Sevilla, Spain.
- Carrizosa, E., Conde, E., Muñoz, M. and Puerto, J. (1995), Planar point-objective location problems with nonconvex constraints: a geometrical construction. *Journal of Global Optimization* 6: 77–86.
- 4. Carrizosa, E., Conde, E. and Romero-Morales, D. (1997), Location of a semiobnoxious facility. A biobjective approach. In *Advances in Multiple Objective and Goal Programming*. *Lecture Notes in Economics and Math. Systems* 455, Springer, Berlin, 274–281.
- 5. Carrizosa, E. and Frenk, J.B.G. (1998), Dominating sets for convex functions with some applications. *Journal of Optimization Theory and Applications* 96: 281–295.
- 6. Carrizosa, E. and Plastria, F. (1999), Location of semi-obnoxious facilities. *Studies in Locational Analysis* 12: 1–27.
- 7. Chankong, V. and Haimes, Y. (1983), Multiobjective Decision Making, North-Holland.
- Das, I. and Dennis, J.E. (1998), Normal-Boundary Intersection: A New Method for Generating the Pareto Surface in Nonlinear Multicriteria Optimization Problems. SIAM J. on Optimization 8: 631–657.
- 9. Durier, R. (1990), On Pareto optima, the Fermat-Weber problem and polyhedral gauges, *Mathematical Programming* 47: 65–79.

- 10. Durier, R. and Michelot, C. (1985), Geometrical Properties of the Fermat-Weber problem, *European Journal of Operational Research* 20: 332–343.
- 11. Erkut, E. and Neuman, S. (1989), Analytical Models for Locating Undesirable Facilities, *European Journal of Operational Research* 40: 275–291.
- Hansen, P., Jaumard, B. and Lu, S.H. (1992), Global optimization of univariate Lipschitz functions. II. New algorithms and computational comparison. *Mathematical Programming* 55: 273–292.
- 13. Hansen, P., Peeters, D., Richard, D. and Thisse, J.F. (1985), The minisum and mimimax location problems revisited. *Operations Research* 33: 125–126.
- 14. Hansen, P. and Thisse, J.F. (1981), The Generalized Weber-Rawls Problem, *Operations Research* (J.P. Brans, ed.). North Holland, pp. 487–495.
- 15. Horst, R. and Tuy, H. (1990), *Global Optimization. Deterministic Approaches*. Springer-Verlag.
- Kuhn, H.W. (1967), On a pair of dual nonlinear programs, in J. Abadie (ed.), *Methods of Nonlinear Programming*. North-Holland, pp. 37–54.
- 17. Love, R.F., Morris, J.G. and Wesolowsky, G.O. (1988), *Facilities location: models and methods*, North-Holland, New York.
- 18. Mateos, A. and Ríos-Insua, S. (1996), Utility efficiency and its approximation. *Top* 4: 285–299.
- 19. Michelot, C. (1993), The mathematics of Continuous Location, *Studies in Locational Analysis* 5: 59–83.
- 20. Okabe, A., Boots, B. and Sugihara, K. (1992), Spatial tesselations. Concepts and applications of Voronoi diagrams. Wiley.
- 21. Plastria, F. (1983), *Continuous location problems and cutting plane algorithms*, Ph.D. dissertation, Vrije Universiteit Brussel, Brussels.
- 22. Plastria, F. (1984), Localization in single facility location, *European Journal of Operational Research* 18: 215–219.
- 23. Plastria, F. (1995), Continuous Location Problems, in *Facility Location: A Survey of Applications and Methods*, Springer-Verlag, New York, pp. 225–262.
- 24. Plastria, F. (1996), Optimal location of undesirable facilities: A selective overview, *JORBEL: Belgian Journal of Operations Research, Statistics and Computer Science* 36: 109–127.
- 25. Plastria, F. and Carrizosa, E. (1999), On gauges and median hyperplanes. Working paper BEIF/112. Vrije Universiteit Brussel, Brussels, Belgium.
- 26. Preparata, F.P. and Shamos, M.I. (1985), *Computational Geometry An Introduction*, Springer Verlag.
- 27. Schaible, S. (1995), Fractional Programming, in R. Horst and P.M. Pardalos (eds.), *Handbook of Global Optimization*, Kluwer.
- 28. Steuer, R. (1986), Multiple criteria optimization: Theory, Computation, Application, Wiley.
- 29. Thisse, J.F., Ward, J.E. and Wendell, R.E. (1984), Some Properties of Location Problems with Block and Round Norms, *Operations Research* 32: 1309–1327.
- 30. Wendell, R.E. and Hurter, A.P. (1973), Location theory, dominance, and convexity, *Operations Research* 21: 314–320.
- 31. White, D.J. (1982), Optimality and Efficiency. Wiley.