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Abstract. In this paper we address the problem of finding a dominator for a multiple-objective
maximization problem with quasiconvex functions. The one-dimensional case is discussed in some
detail, showing how a Branch-and-Bound procedure leads to a dominator with certain minimality
properties. Then, the well-known result stating that the set of vertices of a polytope S contains an
optimal solution for single-objective quasiconvex maximization problems is extended to multiple-
objective problems, showing that, under upper-semicontinuity assumptions, the set of (k 2 1)-
dimensional faces is a dominator for k-objective problems. In particular, for biobjective
quasiconvex problems on a polytope S, the edges of S constitute a dominator, from which a
dominator with minimality properties can be extracted by Branch-and Bound methods.
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1. Introduction
n n kGiven a nonempty closed subset S of R and a function F : S , R → R , define the

multiple-objective problem (P[F; S]),

max F(x) , (P[F; S])
x[S

which seeks those alternatives maximizing simultaneously the components
F , F , . . . , F of F, [7, 28, 31].1 2 k

Although the term simultaneous maximization is not uniquely defined, it
customarily means finding the set % [F; S] of efficient or Pareto-optimal solutions to
(P[F; S]),

% [F; S] 5 hx [ S : no y [ S verifies F ( y) > F (x) ;i 5 1, 2, . . . , ki i

with at least one inequality strictj

In general % [F; S] lacks many desirable properties such as being connected or
closed, and this seems to be quite often the case and not only in pathological

´* The research of this author is partially supported by Grant PB96-1416-C02-02 of Direccion General de
˜Ensenanza Superior, Spain.



36 EMILIO CARRIZOSA AND FRANK PLASTRIA

Figure 1. Biobjective convex maximization.

examples: take, for instance, the biobjective convex maximization problem in one
2 2variable (n 5 1, k 5 2) with F(x) 5 ((x 1 1) , (x 2 1) ) and S 5 [22, 1.5], plotted in

Figure 1.
Since F(22) > F(x) ;x [ ] 2 2, 0], with at least one inequality strict, and

F(1.5) > F(x) ;x [ [0.5, 1.5[, with at least one ineuality strict too, it follows that the
set of Pareto-optimal points must be contained in h22j < ]0, 0.5[ < h1.5j. In fact, it
is readily seen from the plot that

% [F; S] 5 h22j < ]0, 0.5[ < h1.5j ,

which is a disconnected non-closed set. See following sections and also e.g. [3] for
other instances.

Moreover, although there exist procedures to check whether a given point is
efficient or not, e.g. [7, 31], an algorithm to construct % [F; S] is only available for a
few classes of problems, such as multiple-objective linear problems, [28].

This drawback has been overcome in the literature by means of two strategies:
either % [F; S] is sought, but, due to the unability for obtaining it, an approximation
(sometimes with unknown degree of precision) is provided, e.g. [8, 18], or else the
concept of efficiency is relaxed and replaced by a manageable surrogate of it.

In this paper we follow the second approach by using the concept of dominator,
[5, 16, 21, 30], also called weak kernel, e.g. in [31] which is defined as any subset
S , S such that, for any feasible x [⁄ S , S contains a feasible alternative at least as0 0 0

good as x with respect to all objectives. See Section 2 for a formal definition.
It should be remarked that this concept is not only useful as a surrogate of the

idea of Pareto-efficiency, but also as a tool in the resolution of some single-objective
problems. Indeed, some of the most popular optimization methods for single-
objective problems of the form
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max C(x) (1.1)
x[S

require the feasible region S to be bounded. Such is the case, among others, of the
Branch and Bound methods for global optimization, e.g. [15], which, in their
simplest version, require, as pre-processing, the construction of a bounded poly-
hedron P (usually a hyper-rectangle, or a simplex) including either the whole
feasible region, or, at least a bounded subset S , S known to contain an optimal0

solution. Moreover, the speed of convergence of the procedure is known to
deteriorate with the volume of P, so P should be as small as possible in order to
obtain reasonable computation times.

How to construct P will depend, of course, on the specific properties of the
problem at hand. In particular, if (1.1) has the form

max F(F(x)) , (1.2)
x[S

for some F : F(S) → R componentwise non-decreasing, then it is well known that, if
(1.1) has optimal solutions, then any dominator for the multiple-objective problem
max F(x) also contains optimal solutions for (1.1), [21]. In other words, we canx[S

take as S any bounded dominator for the multiple-objective problem, and as P any0

superset of S with the required geometry.0

This property has been successfully exploited, among others, in [5, 21, 22, 30]
for problems of Linear Regression and Continuous Location, in which the
globalizing function F is an arbitrary non-decreasing function and the function F is
componentwise concave. Our aim here is to address the (harder) problem in which
the function F is componentwise (quasi)-convex, showing as main result (Proposi-
tion 19) that, under upper-semicontinuity assumptions, the search of a dominator can
be restricted to the (k 2 1)-dimensional faces of S.

The rest of this paper is structured as follows. In Section 2 we formally introduce
the concept of dominators and discuss some general properties. These properties are
used in Section 3 to address the one-dimensional case, for which dominators with
certain minimality properties can be obtained.

Section 4 is devoted to show that, for multiple-objective multi-dimensional
problems, one can construct dominators contained in low dimensional faces of the
polytope S.

The paper ends with an application of these results to the construction of a
dominator for a biobjective problem in Continuous Location. The reader is referred
also to [25] for another successful application of the technique developed in this
paper.

2. Dominators
>Defining for each x [ S the upper level set at x of F on S, 6 (x) as

>6 (x) 5 hy [ S : F ( y) > F (x) for all i 5 1, 2, . . . , kj ,i i
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the set % [F; S] of efficient solutions may be defined by

> >% [F; S] 5 hx [ S : If y [ 6 (x) then x [ 6 ( y)j
>

5 hx [ S : If y [ 6 (x) then F(x) 5 F( y)j

DEFINITION 1. A set S* , S is said to be a dominator for (P[F; S]) iff for each
x [ S there exists some x* [ S* which has, componentwise, a value not smaller than
x. In other words, S* is a dominator iff

>(;x [ S) 'x* [ 6 (x) > S*

Hereafter, the class of dominators for (P[F; S]) will be denoted by $ [F; S].
A direct consequence of the definition is the following:

PROPOSITION 2. One has
1. S [ $ [F; S]. In particular, $ [F; S] is nonempty.
2. If D [ $ [F; S] and D* satisfies D , D* , S, then D* [ $ [F; S].

n3. For any class hS : j [ Jj of nonempty sets in R ,j

If S* [ $ [F; S ](; j [ J) then < S* [ $ F; < SF Gj j j j
j[J j[J

n4. For any class hS : j [ Jj of nonempty sets in R ,j

> $ [F; S ] , $ F; < SF Gj j
j[J j[J

5. If D [ $ [F; S], then

$ [F; D] , $ [F; S] .

By Proposition 2, the class $ [F; S] is nonempty since the whole feasible set S is
one of its elements. However S does not seem to be the most appropriate dominator
since it possibly contains (too) many dominated alternatives, being too far from the
ideal aim of a smallest possible dominator.

PROPOSITION 3. Suppose each F is upper-semicontinuous on S, then any class ofj

compact nested dominators is closed under intersections. In other words: if (I, a) is]
a totally ordered set, and hD j is a class of compact dominators with D , D ,i i[I i j

j [ I, i a j, then]

> D [ $ [F; S] .i
i[I

Proof. Take any x [ S. By the upper-semicontinuity of the functions F , all upperj

level sets hy [ S : F ( y) > F (x)j are closed, so their intersection 6 > (x) is alsoj j

closed. By the definition of dominators and their compactness, it follows for each
> >i [ I that 6 (x) > D is a nonempty compact set, thus h6 (x) > D j constitutes ai i i[I
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>class of nested compact sets. By compactness their intersection (i.e., 6 (x) >
> D ) is nonempty.i[I i

However, it is evident that the whole class $ [F; S] is not closed under
intersections (take constant functions F , . . . , F , then any singletons hxj, hyj , S are1 k

dominators, with empty intersection). Hence, a unique smallest dominator is
unlikely to exist. We then relax the idea of smallest dominator by introducing the
concept of (weak) minimal dominators. First define for each x [ S the strict upper

.level set of F on S, 6 (x) as
.6 (x) 5 hy [ S : F ( y) . F (x) for all i 5 1, 2, . . . , kj .i i

DEFINITION 4. A dominator S* is said to be minimal for (P[F; S]) iff no proper
subset of S* belongs to $ [F; S]. In other words, S* , S is minimal iff

>(x, y [ S*, x 5⁄ y) ⇒ x [⁄ 6 ( y)

A dominator S* , S is said to be weak minimal for (P[F; S]) iff
.(x, y [ S*) ⇒ x [⁄ 6 ( y)

The class of minimal (respectively weak minimal) dominators for problem
(P[F; S]) will be denoted by $ [F; S] (respectively $ [F; S]).M WM

As a simple illustration of the concepts, consider the 2-dimensional 2-objective
optimization problem max F(x), depicted in Figure 2, where the feasible region Sx[S

2is the polyhedron in R with vertices a 5 (0, 23), b 5 (4, 21), c 5 (4, 0), d 5 (0, 3),
and F is given by

F (x , x ) 5 x1 1 2 1

F (x , x ) 5 ux u2 1 2 2

Then, the Pareto optimal set is given by

% [F; S] 5 hdj < [a, b] ,

Figure 2. S and F(S).
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only two minimal dominators exist, namely

S 5 [a, b]1

S 5 ]a, b] < hdj ,2

whereas the polygonal S ,3

S 5 hdj < [a, b] < [b, c]3

is also weak minimal.
We observe in this example that the two minimal dominators are proper subsets

of % [F; S]. This result is more general, as stated in the following:

PROPOSITION 5. Suppose that S is compact and each F is upper semicontinuousi

on S. Then
1. % [F; S] is a weak minimal dominator.
2. Minimal dominators exist.
3. % [F; S] 5 < S* .S*[$ [F ;S ]M

>Proof. By the upper-semicontinuity assumption, for each x [ S the set 6 (x) is
compact. Hence, by Theorem 6 of Chapter 2 of [31] % [F; S] is a dominator, which,
by construction, is also weak minimal. Hence 1 holds.

To show 2, define on % [F, S] the equivalence relation

r 5 h(x, y) [ % [F; S] 3 % [F; S] : F(x) 5 F( y)j .

Taking exactly one element in every equivalence class, we obtain a set S* which is,
by construction, a minimal dominator. Indeed, it is a dominator because % [F; S] is a
dominator, as shown in Part 1. Moreover it is minimal: if there exists some
dominator M , S*, M ± S*, for any x [ S* \M there would exist some y [ M with
F( y) > F(x). But by construction of S* we would have F( y) ± F(x) contradicting the
fact that x is efficient. Hence, minimal dominators exist.

For Part 3, we first show that every efficient point is in some minimal dominator:
let x* [ % [F; S], and construct a subset S* of % [F; S] taking exactly one element of
every equivalence class (with respect to the equivalence relation r above), x* being
the element chosen from its equivalence class. Using the reasoning above, it is seen
that S* is a minimal dominator, and x* [ S*.

Finally to show that any minimal dominator is included in the efficient set, take
x* [ S*, for some S* [ $ [F; S], and assume x* [⁄ % [F; S]. Then, there existsM

some y [ S with F( y) > F(x), and at least one inequality strict. Since S* [ $ [F; S],M

there must exist some y* [ S* with F( y*) > F( y) > F(x*), thus the set S* \hx*j will
also be a dominator, contradicting the minimality of S*. Hence, x* [ % [F; S]. h

REMARK 6. The upper-semicontinuity assumption is needed in order to guarantee
2the nonvoidness of $ [F; S], as the following counterexample shows: Let S , RWM

be the triangle whose endpoints are (21, 0), (1, 0), (0, 1), and let F : S → R be1
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defined as 1/(1 2 x ) on the relative interior of the two top-edges, and zero2

elsewhere. Since

lim F (x , x ) 5 1` ,1 1 2
(x ,x )→(0, 1),1 2
(x ,x )[bd(S )1 2

the maximum of F on S is not attained, thus any D [ $ [F ; S] must contain a1 1

sequence of boundary points converging to (0, 1), implying that D contains points
x, y with F (x) . F ( y). Hence, no weak minimal dominator exists. h1 1

3. Multiple-objective one-dimensional problems

In this section we address the multiple-objective problem (P[F; S]) when S is given
as a finite union of compact intervals in R, and each F is quasiconvex on eachi

interval. We first discuss some properties of one-dimensional single-objective
quasiconvex minimization problems, which are then used to tackle (P[F; S]), first
when S reduces to a single compact interval and then in the general case. For the
basic properties of quasiconvex functions we refer the reader to [1].

3.1. SINGLE-OBJECTIVE QUASICONVEX MINIMIZATION PROBLEMS ON AN INTERVAL

Let I , R be a nonempty compact interval, and let g : I → R be quasiconvex. We
will denote by cl g the closure of g relative to I, namelyI

cl g(x) 5 inf ht : 'hx j , I, such that x → x, g(x ) → tjI r r r r
(3.3)

5lim inf g(x )rx →xr

LEMMA 7. One has:
1. g(x) > cl g(x) for all x [ I.I

2. inf g(x) 5 inf cl g(x).x[I x[I I

3. cl g is quasiconvex and lower-semicontinuous.I

4. The set arg min cl g(x) of optimal solutions to min cl g(x) is ax[I I x[I I

nonempty compact subinterval of I.
Proof. 1 to 3 immediately follow from the definition of quasiconvexity and (3.3).
By the lower semicontinuity of cl g, the set arg min g(x) is compact andI x[I

nonempty; since cl g is also quasiconvex, it follows that arg min cl g(x) is alsoI x[I I

convex, thus it is a compact interval, and Part 4 follows. h

We recall that a function g is said to be semistrictly quasiconvex, [1], if it satisfies
the following:

g(a) , g(b)
⇒ g(c) , g(b)Jc [ ]a, b[

The next lemma shows that, due to the quasiconvexity of g, the behavior of g and
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cl g are closely related, the relationship being stronger for semistrictly quasiconvexI

g:

LEMMA 8. Let x* [ arg min cl g(x), and let z , z [ I such that z [ ]x*, z [.x[I I 1 2 1 2

One has:
1. g(z ) < g(z ).1 2

2. If g is also semistrictly quasiconvex and g(z ) 5 g(z ), then1 2

]x*, z [ , arg min g(x).2 x[I

Proof. By definition of cl g and Part 2 of Lemma 7, one can take a sequence hx jI r

in I converging to x* such that inf g(x ) 5 inf g(x) 5 cl g(x*).r r x[I I

Since z . x*, there exists r such that x , z for all r > r , thus1 0 r 1 0

z [ ]x , z [ for all r > r1 r 2 0

Given r > r , if it were the case that g(z ) , g(z ), then0 2 1

g(z ) , g(z )2 1

< maxhg(z ), g(x )j2 r

Hence, g(z ) < g(x ) for each r > r thus one would have1 r 0

g(z ) , g(z )2 1

<inf g(x )rr

5inf g(x) ,
x[I

which is a contradiction. Hence, g(z ) > g(z ), which shows 1.2 1

To show 2, by the quasiconvexity of g it is enough to show that, if g(z ) 5 g(z ),1 2

then hz , z j , arg min g(x). Suppose that, on the contrary, g(z ) 5 g(z ) .1 2 x[I 1 2

inf g(x). Then, by Lemma 7,x[I

g(z ) 5 g(z )1 2

. cl g(x*) ,I

and we could take a sequence hx j converging to x* with g(x ) converging tor r

cl g(x*) and g(x ) , g(z ) for each r. Since z [ ]x*, z [, it would follow thatI r 2 1 2

z [ ]x , z [ for some r, thus, by the strict quasiconvexity of g, g(z ) , g(z ), which1 r 2 1 2

would be a contradiction. Hence g(z ) 5 g(z ) 5 cl g(x*), showing that1 2 I

[z , z ] , arg min g(x) .1 2
x[I

By the quasiconvexity of both g and cl g, and the optimality of x* and [z , z ] forI 1 2

min cl g(x), it then follows thatx[I I

[x*, z ] , arg min g(x) ,1
x[I

and the result holds. h
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Another interesting property, which will be exploited in the sequel, states that,
once problem min cl g(x) has been solved, any problem inf g(x) with nestedx[I I x[J

feasible interval J , I is immediately solved. Indeed, denoting by i(J) the interior of
J, one has:

:PROPOSITION 9. Let J 5 [a, b] , I be two compact intervals in R. One has:
1. cl g < cl g on J, andI J

cl g(x) 5 cl g(x) for all x [ i(J) (3.4)I J

2. If (arg min cl g(x)) > i(J) ± 5, thenx[I I

inf g(x) 5min cl g(x) (3.5)I
x[J x[I

3. If (arg min cl g(x)) > i(J) 5 5, thenx[I I

inf g(x) 5 minhg(a), g(b)j (3.6)
x[J

Proof. Part 1 is a direct consequence of the definition of the closure of g and
Lemma 7.

For Part 2, let x* [ arg min cl g(x) > i(J); then, by Parts 1, 2 of Lemma 7 andx[I I

Part 1 of this proposition,

min cl g(x) 5 cl g(x*)I I
x[I

5 cl g(x*)J

5min cl g(x)J
x[J

5 inf g(x)
x[J

>inf g(x)
x[I

5min cl g(x)I
x[I

Part 3 immediately follows from Lemma 8 if arg min cl g(x) contains pointsx[I I

in I \J. In the remaining case, arg min cl g(x) consists of just one endpoint of J,x[I I

say a. If a sequence hx j , J exists converging to a with g(x ) converging toi i

min cl g(x) 5 cl g(a), then the result follows from the definition of cl g.x[I I I I

Otherwise there exists x* , a with g(x*) , g(a) and then the quasiconvexity of g
implies that, for any x [ J,

g(x*) , g(a)

< maxhg(a), g(x)j ,

thus g(x) > g(a), showing (3.6). h
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3.2. MULTIPLE-OBJECTIVE QUASICONVEX MAXIMIZATION PROBLEMS ON AN INTERVAL

In this subsection we show how to find a (weak) minimal dominator for the problem
(P[F; I]) when I 5 [a, b] is a compact interval of R.

By Lemma 7, for each i 5 1, 2, . . . , k, the set arg min cl F (x) is a nonemptyx[I I i
i iclosed subinterval of I, thus it has the form [a , b ].

i iLEMMA 10. Let x [ ]a, min b [ (respectively x [ ] max a , b[). Then,1<i<k 1<i<k
> >a [ 6 (x) (respectively b [ 6 (x)).

i jProof. Given x [ ]a, min b [ and j [ h1, 2, . . . , kj, it follows that x , b ,1<i<k
j jthus, by the definition of b there exists y [ arg min cl F ( y) such that x [y[I I j

j >]a, y [. Hence, by Lemma 8, F (x) < F (a) for all j, showing that a [ 6 (x). Thej j

other case is similar.

0PROPOSITION 11. Define D asI

0 i iD 5 ha, bj < [ min b , max a ] ,I
1<i<k 1<i<k

i i iwhere it is understood that [min b , max a ] 5 5 if min b .1<i<k 1<i<k 1<i<k
imax a . Define also1<i<k

haj, if F(a) > F(b)
hbj, if F(b) > F(a), F(b) ± F(a)D 5I 5 0 > >D \(hx ± a : a [ 6 (x)j < hx ± b : b [ 6 (x)j), otherwiseI

One then has
01. D [ $ [F; I].I

2. D [ $ [F; I].I WM
> >3. If a [ 6 (b), b [ 6 (a), or each F is semistrictly quasiconvex on [a, b],i

then D [ $ [F; I].I M

>Proof. Part 1 follows from Lemma 10. To show 2, if a [ 6 (b) one would have
for each x [ I and i [ h1, 2, . . . , kj that

F (x) < maxhF (a), F (b)ji i i

5 F (a) ,i

>thus a [ 6 (x); hence D 5 haj [ $ [F; I], which is (weak) minimal being aI
>singleton. A similar result is obtained when b [ 6 (a), thus to finish the proof of 2,

> >we assume that a [⁄ 6 (b) and b [⁄ 6 (a). In particular, ha, bj , D . Given x [I
> 0[a, b], it follows from Part 1 that there exists some y [ 6 (x) > D ; if y [⁄ D , thenI I

> > > >y [⁄ ha, bj and either a [ 6 ( y) , 6 (x) or b [ 6 ( y) , 6 (x), hence 5± ha, bj >
> > >6 (x) , D > 6 (x); if y [ D then D > 6 (x) ± 5. Thus D [ $ [F; S].I I I I

To show that D [ $ [F; I], suppose that, by contradiction, x, y [ D exist suchI WM I
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.that x [ 6 ( y). Since either x [ [a, y[ or x [ ]y, b], we can assume w.l.o.g. that
x [ [a, y[. Then, for each i

F ( y) , F (x)i i

< maxhF (a), F ( y)ji i

.thus F ( y) , F (a) for each i. Hence a [ 6 ( y), thus y [⁄ D , which is a contradic-i i I

tion. Hence D [ $ [F; I], and this shows 2.I WM
>The minimality property of Part 3 was shown above for a [ 6 (b) or b [

>6 (a), so we show now the case of semistrictly quasiconvex functions F . Supposei
>that, on the contrary, x, y [ D exist such that x [ 6 ( y) \hyj. Since y [ D , one getsI I

that x [⁄ ha, bj; then, x [ ]a, y[ < ]y, b[, thus w.l.o.g. we assume x [ ]a, y[. Since
x [ D \haj, a [⁄ 6(x), thus there exists some i with F (a) , F (x), thusI i i

F (a) , F (x)i i

< maxhF (a), F ( y)j ,i i

>thus F (x) < F ( y), and, since x [ 6 ( y), F (x) 5 F ( y), which contradicts thei i i i

semistrict quasiconvexity of F . Hence, D [ $ [F; I].i I M

REMARK 12. In Part 1 of Proposition 11, a dominator has been constructed,
consisting of at most three intervals, two of which are reduced to a point. Moreover,
such a dominator is easily derived once all the single-objective one-dimensional
problems min cl F (x), i 5 1, 2, . . . , k have been solved.x[I I i

On the other hand, it follows from the quasiconvexity of the functions F that thei
> >set hx [ I : a [ 6 (x)j (respectively hx [ I : b [ 6 (x)j) is an interval having a

(respectively b) as one of its endpoints. This implies that the set D , shown in Part 2I

of Proposition 11 to be weak minimal, also consists of at most three intervals, two
of which are reduced to the endpoints of I.

>In the case of continuous F , finding the set hx : a [ 6 (x)j is reduced to finding,i

for each i 5 1, . . . , k, the highest root of the nonlinear equation F (x) 5 F (a), which,i i

due to the quasiconvexity of F can be solved with any prespecified accuracy by e.g.i

binary search.

k kREMARK 13. For the biobjective case (k 5 2), the interval [min b , max a ] is,k k

by construction, such that, within it, both F and F are monotonic: one non-1 2

decreasing and the other nonincreasing. Hence, for the biobjective case, there is no
loss of generality in assuming that functions F are not only quasiconvex but alsoi

k kquasiconcave on the intervals [min b , max a ].k k

EXAMPLE 1. Let I 5 [0, 4], and consider the three quasiconvex functions F , F , F1 2 3

defined as
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Figure 3. Functions of Example 1.

2xF (x) 5 u4e 2 2u1

22(x 2 3)
]]]]F (x) 52 21 1 (x 2 3)

x
]F (x) 5 min 1, 2 2 ,H J3 5

depicted in Figure 3.
In order to construct the dominator(s) described in Proposition 11, we must

determine first the set [a , b ] of minima on I for each F . These are respectivelyi i i

hln 2j 5 h0.6931j, h3j and [0, 4]. This yields

i a bi i

1 0.6931 0.6931
2 3 3
3 0 4

For this we obtain the dominator

0D 5 h0, 4j < [0.6931, 3]I

Moreover, by comparing the endpoints, we get

F(0) 5 (2, 1.8, 1)

F(4) 5 (1.9267, 1, 1) ,
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thus F(0) > F(4). Hence, by Proposition 11, the set D 5 h0j is not only a weakI

minimal dominator but also a minimal dominator.
Suppose now that the feasible region is the interval I 5 [5, 9]. In this case we

obtain

i a bi i

1 5 5
2 5 5
3 9 9

From this it is easily seen that

0D 5 D 5 [5, 9] .I I

Since all the functions are semistrictly quasiconvex in I, it follows that I is a
minimal dominator for max F(x).x[I

0 0Finally, for I 5 [4, 9] we similarly obtain D 5 D 5 [4, 9], but in this case D isI I I

not a minimal dominator, since [5, 9] is a strictly included dominator (which may be
seen to be minimal).

3.3. MULTI-OBJECTIVE QUASICONVEX MAXIMIZATION PROBLEMS ON A SET OF

INTERVALS

As a natural extension of the model presented in Section 3.2, we address here the
problem

max F(x) ,
x[X

where
• X 5 < I , with hI j being a family of compact (possibly degenerate)1<i<t i i 1<i<t

intervals of the real line, not necessarily disjoint,
• F , . . . , F are quasiconvex on each I , i 5 1, . . . , t. (Note that this is a weaker1 k i

assumption than each component of F to be quasiconvex in the convex hull of
< I ).1<i<t i

By Proposition 2, if one finds, for each i 5 1, 2, . . . , t some dominator D [i

$ [F; I ], then any D [ $ [F; < D ] would serve as a dominator for (P[F;i 1<i<t i

< I ]). Moreover, if a (weak) minimal dominator is sought, redundant1<i<t i

alternatives should be purged, either in the construction of the sets D (by imposingi

e.g. D [ $ [F; I ]) or when they are merged to produce a (small) final dominator.i 0} i

To approximate this goal one can use a Branch-and-Bound scheme, similar to the
one described in [14]: we start with a list + of compact intervals, the union of
which is known to be a dominator for (P[F; < I ]), and then refine iteratively1<i<t i
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the elements in +, by making pairwise comparisons, in such a way that, at any
stage, one has

< I [ $ [F; < I ]1<i<t i
I[+

To perform comparisons among elements in + we introduce, for each interval
k:I 5 [a, b] contained in some I , the vectors M(I), UB(I) [ R of evaluations at thei

midpoint of I and a componentwise upper bound of F, respectively:

a 1 b
]]S DM(I) 5 Fj j 2

UB(I) >max F (x)j j
x[I

REMARK 14. By the quasiconvexity of F on I , I , it follows that one may choosej i

UB(I) 5 maxhF (a), F (b)j j 5 1, 2, . . . , kj j j

Note also that for I 5 haj we have M(I) 5 UB(I).

From the definitions of the vectors M and UB one immediately obtains the
following way to check whether some interval J can be discarded from further
consideration in the Branch-and-Bound scheme.

PROPOSITION 15. Given nonempty compact intervals I, J, suppose F is continu-
ous on I and on J. Then the following statements are equivalent:

1. I [ $ [F; J], i.e. for any y [ J there exists x [ I with F(x) > F( y)
2. 0 < min max min (F (x) 2 F ( y)).y[J x[I 1<j<k j j

This is implied by both

> hx [ I : F (x) > UB(J) j ± 5 (3.7)1<j<k j j

and

0 < min (M(I) 2 UB(J) ) , (3.8)j j
1<j<k

while (3.8) always implies (3.7).
Proof. The equivalence between 1 and 2 is evident. Since (3.7) is equivalent to

the existence of some x [ I with

F(x) > F( y) ;y [ J , (3.9)

it clearly implies 1. On the other hand, (3.8) is equivalent to (3.9) for x fixed to the
midpoint of I. Hence, (3.8) implies (3.7) and the result follows. h

Although condition (3.8) is easier to implement, the stronger test (3.7) is also of
practical interest since this intersection set, if nonempty, has a simple structure due
to the quasiconvexity of F, as indicated by the following simple result:
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PROPOSITION 16. One has for any values cj

1. Each set hx [ I : F (x) > c j consists of at most two intervals, each with anj j

endpoint of I as one of its endpoints.
2. For k 5 1, 2, . . . , k, the set > hx [ I : F (x) > c j is a collection of n(k )0 1<j<k j j 00

intervals, with

n(1) < 2

n(k ) < n(k 2 1) 1 1 , k 5 2, 3, . . . , k0 0 0

The basic steps of the Branch-and-Bound procedure are described below:

Algorithm 1
Initialization:

:Set + 5 hcl(D ), j 5 1, . . . , tjIj

:Set r 5 1
Iteration r 5 1, 2, . . . , :
for all I [ + do
If, for some J [ +, J ± I, (3.8) or (3.7) hold, then
delete I from + ;

Else, if I is non-degenerate do
split I into I and I at the midpoint of I;1 2

replace I by I and I in + ;1 2

GoTo Iteration r 1 1

Before discussing the output of the algorithm in the limit (r 5 `), let us present an
illustrative example.

EXAMPLE 1 (Cont.)
Let F be the three-objective one-dimensional function described in the first part

of the Example, and assume now that the feasible region X consists of the two
compact segments I 5 [0, 4], and I 5 [5, 9].1 2

In the Initialization phase, we must construct the sets cl(D ), j 5 1, 2. This wasIj

already done in the first part of the Example, thus we start with the list

+ 5 hh0j, [5, 9]j .

Then, we go to Iteration 1. For each interval I (degenerate or not) in +, the
vectors M(I), UB(I) must be constructed. (Observe that this task becomes trivial
using Remark 14 above.) Evaluations at the endpoints, 0, 5, 9 and the midpoint 7
yield
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F(0) 5 (2, 1.8000, 1)

F(5) 5 (1.9730, 1.6000, 1)

F(7) 5 (1.9964, 1.8824, 0.6000)

F(9) 5 (1.9995, 1.9459, 0.2000)

We then obtain

I M(I) UB(I)

h0j (2, 1.8000, 1) (2, 1.8000, 1)
[5, 9] (1.9964, 1.8824, 0.6000) (1.9995, 1.9459, 1)

We will only use the simplest test, namely, (3.8) in the algorithm.
Since no pair of intervals in + satisfies condition (3.8), we go to Iteration 2 with

the list of intervals

+ 5 hh0j, [5, 7], [7, 9]j .

Two new midpoints appear, namely, 6 and 8, with objective values

F(6) 5 (1.9901, 1.8000, 0.8000)

F(8) 5 (1.9987, 1.9231, 0.4000) .

This enables us to update the table of vectors M, UB yielding

I M(I) UB(I)

h0j (2, 1.8000, 1) (2, 1.8000, 1)
[5, 7] (1.9901, 1.8000, 0.8000) (1.9964, 1.8824, 1)
[7, 9] (1.9987, 1.9231, 0.4000) (1.9995, 1.9459, 0.6000)

As in the previous iteration, no pair of intervals satisfies condition (3.8), and we
go to Iteration 3 with the updated list of intervals

+ 5 hh0j, [5, 6], [6, 7], [7, 8], [8, 9]j

The new midpoints give objective values

F(5.5) 5 (1.9837, 1.7241, 0.9000)

F(6.5) 5 (1.9940, 1.8491, 0.7000)

F(7.5) 5 (1.9978, 1.9059, 0.5000)

F(8.5) 5 (1.9992, 1.9360, 0.3000)
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With this, our new table of vectors M, UB is given by

I M(I) UB(I)

h0j (2, 1.8000, 1) (2, 1.8000, 1)
[5, 6] (1.9837, 1.7241, 0.9000) (1.9901, 1.8000, 1)
[6, 7] (1.9940, 1.8491, 0.7000) (1.9964, 1.8824, 0.8000)
[7, 8] (1.9978, 1.9059, 0.5000) (1.9987, 1.9231, 0.6000)
[8, 9] (1.9992, 1.9360, 0.3000) (1.9995, 1.9459, 0.4000)

In this case, the sufficient condition for dominance is satisfied for the pair of
intervals h0j and [5, 6], so the interval [5, 6] can be excluded for further considera-
tions.

We would then obtain a reduced list

+ 5 hh0j, [6, 7], [7, 8], [8, 9]j

to start Iteration 4, if desired. h

The following theorem shows that the successive steps of the algorithm above
provide a sequence of nested compact dominators, converging to a dominator which,
under mild further assumptions on the functions F , enjoys minimality properties:i

PROPOSITION 17. Denote by D the union of all intervals of + at the end ofr

iteration r, and by D* the compact set
`

D* 5 > Dr
r51

1. D 5 X 5 < I and D , D for all r.1 1<i<t i r11 r

2. If F is upper-semicontinuous, then

D* [ $ [F; X] (3.10)

3. Moreover, if F is continuous, then

D* [ $ [F; X] . (3.11)0}

Proof. The first property is evident from the algorithm.
By construction, each D is compact, thus their intersection is also compact.r

Moreover, D [ $ [F; X], thus, by Proposition 3, (3.10) follows.r

To show (3.11), suppose, on the contrary, that there exist x , x [ D* with1 2
. rx [ 6 (x ). If, for each i 5 1, 2 and r 5 1, 2, . . . , we denote by ( the class of1 2 i

r rintervals I in the list at stage r with x [ I , it will follow from the splitting processi i i
r rthat there exists some r such that, for each r > r , and each I [ (0 0 i i

r rx [⁄ I , and x [⁄ I1 2 2 1
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Since the functions F are continuous, thus uniformly continuous on X, there wouldi
r rexist some r such that for each I [ (i i

r rF (x) . F ( y) for all x [ I and y [ I , j 5 1, 2, . . . , kj j 1 2

r r rHence UB(I ) , M(I ), implying that I (thus x ) would have been deleted prior to2 1 2 2

stage r by (3.8), thus x [⁄ D*, which is a contradiction. h2

4. Multiple-objective multi-dimensional problems

For the single-objective case (i.e., if k 5 1 in (P[F ; S])), it is a well-known result of1

Global Optimization that, if S is a polytope and F is quasiconvex on S, then the set1

of vertices of S is a dominator for (P[F ; S]), [15].1
jIn other words, if, for j 5 0, 1, . . . , n, ^ denotes the set of points of a polytope

S contained in some j-dimensional face of S, then

0^ [ $ [F ; S] (4.12)1

The next proposition extends assertion (4.12) to multiple-objective quasiconvex
problems. To show it, we will use the following

nLEMMA 18. Let P be a polyhedron in R , and let H , H , . . . , H be closed1 2 t
nhalfspaces in R . If x* is an extreme point of P > > H , then x* belongs to1<i<t i

some face of P with dimension not greater than t.
Proof. Let P be represented as

nP 5 hx [ R : a9x < b for all r [ Rjr r

for some finite index set R, and let each H be given asi

nhx [ R : c9x < d ji i

Define the sets of active indices R(x*) and T(x*) as

R(x*) 5 hr [ R : a9x* 5 b jr r

T(x*) 5 hi, 1 < i < t : c9x* 5 d ji i

Then x* belongs to the face F of P,

nF 5 P > hx [ R : a9x 5 b ;r [ R(x*)jr r

We will show that F has dimension not greater than t. Indeed, since x* is, by
assumption, an extreme point of P > > H , then the set of vectors ha j <1<i<t i r r[R(x*)

hc j has ranki i[T(x*)

rank(ha j < hc j ) 5 nr r[R(x*) i i[T(x*)
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Hence, denoting by uT(x*)u the cardinality of T(x*), one obtains

rank(ha j ) > n 2 uT(x*)ur r[R(x*)

> n 2 t ,

thus the dimension of F cannot be greater than t. h

nPROPOSITION 19. Let S be a polytope in R , let k < n 1 1, and let F , . . . , F be1 k

quasiconvex functions on S, all but possibly one of which are upper-semicontinuous.
Then

k21^ [ $ [F; S] (4.13)

Proof. Without loss of generality we assume that F , F , . . . , F are upper-1 2 k21

semicontinuous on S. We will show that, for any x [ S,
> k216 (x) > ^ ± 5 (4.14)

Let x [ S, and denote by !(x) the index set

!(x) 5 hi, 1 < i < k 2 1, F ( y) , F (x) for some y [ Sj .i i

If !(x) is empty, we would have

F( y) > F(x) ;y [ S ,
>thus any vertex y* of S satisfies y* [ 6 (x). Hence

> 0 > k215± 6 (x) > ^ , 6 (x) > ^ ,

showing (4.14).
We consider now the case !(x) ± 5. For each i [ !(x), the convex set

hy [ S : F ( y) , F (x)j is open in S (its complement is closed due to the upper-i i

semicontinuity of F ) and does not contain x. Hence, there exists some nonzeroi
ivector u such that
iku , y 2 xl . 0 for all y [ S with F ( y) , F (x) , (4.15)i i

nwhere k?, ?l stands for the usual scalar product in R .
Consider the polyhedron S(x),

n iS(x) 5 S > hy [ R : ku , y 2 xl < 0, ;i [ !(x)j ,

which is nonempty because x [ S(x). Consider the optimization problem

max F ( y) (4.16)k
y[S(x)

Since F is quasiconvex on the nonempty polyhedron S(x), (4.16) has an optimalk

solution at some vertex y* of S(x). We will show that
k21 >y* [ ^ > 6 (x) (4.17)
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Since y* is a vertex of S(x), Lemma 18 implies that

u! (x)u k21y* [ ^ , ^ (4.18)

Since x [ S(x) and y* is optimal for (4.16),

F ( y*) > F (x) (4.19)k k

By definition of !(x),

F ( y*) > F (x) ;i [ h1, 2, . . . , k 2 1j \!(x) (4.20)i i

and by (4.15) and the fact that y* [ S(x),

F ( y*) > F (x) ;i [ !(x) (4.21)i i

> k21Joining (4.18–4.21), (4.17) holds, thus 6 (x) > ^ ± 5, as asserted. h

REMARK 20. The assumption of upper-semicontinuity of at least k 2 1 functions is
not superfluous, as the following example shows: let k 5 2, n 5 2, S 5 [0, 1] 3 [0, 1],
and the functions F , F defined as1 2

1 1 1 1
] ] ] ]0, if x . or x 5 0, 0, if x . or x 5 1,s d s d2 22 2 2 2F (x) 5 F (x) 5H H1 21, otherwise 1, otherwise

1 1
] ]Both functions are quasiconvex but are not upper-semicontinuous; let x* 5 ( , ). It2 2

is easily seen that

> 1
]6 (x*) 5 l, : 0 , l , 1hs d j2

> 1 1thus 6 (x*) > ^ 5 5, showing that ^ is not a dominator. h

As a consequence of Propositions 19 and 2, one obtains

nCOROLLARY 21. Let S be the union of t polytopes S , . . . , S in R . Let F , . . . , F1 t 1 k

be k < n 1 1 real-valued functions on S. On each S , let all F be quasiconvex andj i

all but possibly one F be lower-semicontinuous. Then the union of all k 2 1-faces ofi

all S is a dominator for P[F; S].j

Proposition 19 also enables us to derive localization results for single-objective
problems.

nCOROLLARY 22. Let S be the union of t polytopes S , . . . , S in R . Let F , . . . , F1 t 1 k

be k < n 1 1 real-valued functions on S, quasiconvex on each S . For anyj

componentwise nondecreasing F : F(S) → R such that Problem

max F(F (x), F (x), . . . , F (x))1 2 k
x[S
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has an optimal solution, the union of the set of k 2 1-faces of all S also contains anj

optimal solution.

In particular, for F , F , . . . , F linear fractional functions with positive de-1 2 k

nominators on a polytope S, which are well-known to be quasiconvex (see e.g.
[1], p. 165) and F(s , s , . . . , s ) 5 s 1 s 1 ? ? ? 1 s , or F(s , s , . . . , s ) 51 2 k 1 2 k 1 2 k

maxhs , s , . . . , s j, we obtain1 2 k

COROLLARY 23. The minimum of the sum (respect. the maximum) of k linear
fractional functions with positive denominators over a polytope S in dimension
n > k 2 1 is attained at some k 2 1-face of S.

This generalizes the results known for the case k 5 2 (see the review of [27] and
the references therein). For an application see [25].

REMARK 24. For biobjective problems (k 5 2), since both F are quasiconvex onj

each edge, after embedding such edges as compact intervals of the real line, one can
use the results in Section 3 to design an algorithm converging to a weak minimal
dominator.

For the case of general k, Proposition 19 seems at the moment to be mainly of
theoretical interest: In principle, Algorithm 1 can be generalized to the k-dimension-
al case, by replacing intervals by e.g. simplices, although the corresponding
bounding scheme does not extend to the general case, and less efficient schemes,
such as those proposed in [4, 14], should be used.

Nevertheless, this kind of localization results can be used to design new heuristic
resolution methods of problems of the form min F(F(x)), where k, the number ofx[S

components of F, is very small, and, in particular, much smaller than the dimension
n of the space.

We know then that the search for optimal solutions can be reduced to the
k 2 1-dimensional faces of S, so that algorithms which alternate a global search in a
given low-dimensional face with moves to adjacent low-dimensional faces, can be
used.

5. Application: Location of a semi-obnoxious facility
2Let S 5 S < S < ? ? ? < S , each S being a convex polygon in R . Two finite1 2 t i

1 2 2 1subsets ! , ! of R are given. Associated with each a [ ! we have a concave
function g : [0, 1`) → R and a polyhedral gauge g , [9, 10, 19], i.e., a Minkowskia a

functional whose unit ball is a polytope.
Let h : [0, 1`) → R be a nonincreasing function, and consider the biobjective

problem

min (F (x), F (x)) , (5.22)1 2
x[S
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where

F (x) 5 O g (g (x 2 a))1 a a
1a[!

F (x) 5 max h(ix 2 ai) ,2 2a[!

i ? i being the euclidean norm.
This problem has its motivation in Continuous Location of semidesirable

facilities, see [17, 23] for an introduction to Continuous Location in general and [6,
24] for semidesirable facility location models: A facility is to be located within
region S, and will interact with individuals who want the facility close (those in

1 2 1! ) and others who want the facility far (those in ! ). Interactions with !
provide the first objective in (5.22): the minimization of the total transportation cost

1F (x), where transportation cost from a [ ! to x is given by a concave function g1 a

of the distance from a to x, the latter measured by the polyhedral gauge g , [29].a
2On the other hand, interactions of the facility with ! provide the second

2objective F , which measures the highest damage suffered by points in ! , where2
2the damage suffered by a [ ! is assumed to be given by a nonincreasing function

h of the Euclidean distance from a to x, see [11, 24].
In practice, the two objectives of (5.22) are aggregated into a single criterion,

yielding a problem of the form

max F 2 O g (g (x 2 a)), max h(ix 2 ai) , (5.23)a aS D2a[!1a[!

[6, 24] for some globalizing F, and the resulting problem (multimodal, as a rule),
can be tackled e.g. by the 2-dimensional Branch and Bound method described in
[13]. However, as shown below (Proposition 25), the search of an optimal solution
for (5.23) can be restricted to a series of segments, thus (5.23) can be solved by
simply using single-variable Global-Optimization techniques, [2, 12], which are
usually much faster than their two-variable counterparts.

In order to obtain a dominator for (5.22) one should observe first that, since h is
assumed to be nonincreasing, it suffices to obtain a dominator for problem

max (2F (x), min ix 2 ai) (5.24)1 2x[S a[!

(in fact, if h is decreasing, both problems are equivalent). Let us rewrite now (5.24)
within our framework. For polyhedral gauges, using the concept of elementary
convex set of [10], one can obtain a subdivision # of the plane into polyhedra in
such a way that, within each C [ #, each gauge g is affine, see [9, 10] for furthera

details. For instance, if each g is the l norm, then the polyhedral subdivision of thea 1

plane is obtained after constructing horizontal and vertical lines through each
1 1 2a [ ! , yielding a total of O(u! u ) cells.

2Moreover, defining, for each a [ ! , the Voronoi cell V(a) associated with a as

2 2V(a) 5 hx [ R : ix 2 ai < ix 2 bi for all b [ ! j ,



MULTIPLE-OBJECTIVE QUASICONVEX MAXIMIZATION 57

2 2the class 9 5 hV(a) : a [ ! j also constitutes a polyhedral subdivision of R in
2 2 2O(u! u) polyhedra, which can be efficiently constructed in O(u! u log u! u), see

e.g. [20, 26].
Consider now the class ] of all Z of the form

S > C >V(a)i

2for some i, 1 < i < t, C [ # and a [ ! which are nonempty. On each Z [ ], we
have that 2F is convex (it is the composition of the convex function 2o g11 a[! a

with the affine functions (within Z!) g , and F is also convex (recall that, for Z [ ]a 2
2fixed, there exists some a* [ ! such that min ix 2 ai 5 ix 2 a*i). Hence,2a[!

rewriting (5.24) as

max (2F (x), min ix 2 ai) ,1 2x[< Z a[!Z[]

we can use Corollary 21 to obtain

PROPOSITION 25. The edges of the sets in ] constitute a dominator for Problem
(5.22).

After embedding the edges of polytopes in ] as compact intervals of the real line,
one can use the algorithm described in Section 3.3 to reduce the size of such
dominator, converging (in case of decreasing h) to a weak minimal dominator.
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